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1. Introduction

Quantum hamiltonian reduction applied to affine superalgebras leads to superconformal

W-algebras, which are infinite dimensional algebras with relations that are polynomial in

the generators. From the physical point of view the quantum hamiltonian reduction is a

procedure of BRST quantization of WZWN models with constraints. Then the W-algebra

is a symmetry algebra of the constrained model.

The quantum reduction associates to every 1
2Z gradation on a Lie superalgebra g with

a non–zero even invariant supersymmetric bilinear form a BRST complex, the homology

of which is the W-algebra. Non–equivalent gradations on the same Lie superalgebra lead

to different W-algebras. Typical 1
2Z gradations are those generated by sl(2) embeddings

into g: under the action of the sl(2) subalgebra the algebra g decouples to a sum of sl(2)

eigenspaces with half–integer eigenvalues.

The quantum hamiltonian reduction allows not only to construct W-algebras, but

also to describe their representation theory. The characters and the determinant formula

of highest weight representations of the underlying affine algebra are translated to the

characters and the determinant formula of the correspondent W-algebra representations.

Since the theory of Lie superalgebras and their Kac–Moody affinizations is relatively well

developed, the quantum reduction becomes a strong tool for study superconformal W-

algebras and their representation theory.

The study of hamiltonian reduction of Lie superalgebras has a long history. The

classical reduction is known since 1980’s [5]. The quantization of the classical reduction

is developed in [3, 11, 12, 2]. The first three papers discuss the quantum hamiltonian

reduction of sl(N), based on the principal sl(2) embedding to sl(N), which gives rise to

the so called WN algebras [30, 9]. The paper by Bershadsky [2] is on the quantum reduction

corresponding to the non-principal sl(2) embedding to sl(3). The reduction results in the so

called Bershadsky–Polyakov algebra. In this case the constraints on the WZWN model are

of the second class, and “auxiliary fields” (“neutral free superfermions” in the terminology

of the present paper) have been introduced to describe the second class constraints.

The quantum reduction procedure was further developed in [16]: the representation

theory of the W-algebra was connected to the representation theory of the underlying affine

algebra, in particular characters and fusion coefficients of modular invariant representations

of WN algebras were calculated.

The subject of quantum reduction was under intensive study in early 1990’s, see for

example [10] and references therein. The constrained WZWN models on Lie superalgebras

were studied in [15].

The quantum reduction theory was developed for the case of an integral gradation only,

or for a half–integral gradation which can be reduced to the integral one. However some

Lie superalgebras have only half-integral gradations (including the simplest one osp(1|2)).
The breakthrough was achieved only in 2003 in the series of papers by Kac et al [21 –

23]: the quantum reduction was constructed for any Lie superalgebra with a non–zero

even invariant supersymmetric bilinear form. The structure of the resulting W-algebra

was described in detail. W-algebras corresponding to minimal gradations (“minimal” W-
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algebras) were constructed explicitly. The representation theory of “minimal” W-algebras

is developed in [23]: the determinant formula is obtained.

The untwisted case only is discussed in the papers [22, 23]. However the twisted sectors

(e.g. the Ramond sector) of superconformal W-algebras are of great importance in physics.

In the present paper we generalize the procedure of quantum reduction to the twisted

case. The modifications are described in detail. The determinant formula for “minimal”

W-algebras is calculated in the twisted case.

The paper is organized as follows. In section 2 we introduce the framework: we recall

from [22] the definitions of gradations on Lie superalgebras, “good” gradations, minimal

gradations. In section 3 we collect all the necessary information on the main ingredients

of the construction: affine vertex algebra, superghost system, neutral free superfermion

system. Special attention is devoted to the twisted case. We recall the main points of

the general quantum reduction procedure in section 4. The modifications due to twisted

case are explained. In section 5 we concentrate on the “minimal” W-algebras. In section 6

we state and prove the determinant formula for the Ramond sector representations of the

“minimal” W-algebra. Section 7 contains a list of examples: quantum reduction of Lie

superalgebras of rank up to two is briefly discussed and explicit determinant formulas are

presented. Section 8 contains the discussion of results and their comparison to the results

of [24]. Appendix A fixes the normal ordered product conventions.

When we finished the derivation of the results of the present paper, a work by Kac and

Wakimoto [24] appeared on the net. They consider the same subject and obtain essentially

the same results as in our paper. However, since there is a conceptual difference in some

technical details (see section 8) and in the presentation style, we decided to publish our

paper.

The highest root of a Lie superalgebra is conventionally normalized by (θ|θ) = 2 in the

current paper. “N” is used for positive integers, “N0” – for non-negative integers.

2. Gradation on a Lie superalgebra

We start from a simple finite dimensional Lie superalgebra g with a non-degenerate even

supersymmetric invariant bilinear form (.|.). The gradation of g is the linear space decom-

position

g =
⊕

j

gj, such that [gi, gj] ⊂ gi+j. (2.1)

We say the gradation is generated by an element x ∈ g, if the subspaces gj are eigenspaces

of ad x with eigenvalue j: [x, u] = j u for u ∈ gj.

Fix an even element x ∈ g, such that it generates a gradation in g with half-integer

eigenvalues: g =
⊕

j∈ 1
2

Z
gj . Denote

g> =
⊕

j>0

gj , g≤ =
⊕

j≤0

gj . (2.2)
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An even element f ∈ g−1 is called good if its centralizer gf = {u ∈ g | [f, u] = 0} lies in g≤
(gf ⊂ g≤). A gradation is called good if it is generated by an even element x ∈ g0 with

half-integer eigenvalues and admits a good element f ∈ g−1.

Typical examples of good gradations are gradations associated to the sl(2) embed-

dings in the Lie superalgebra. They are called Dynkin gradations and generated by an

element of an sl(2) triple. Even elements f, x, e ∈ g form an sl(2) triple, if they satisfy the

commutation relations:

[x, e] = e, [x, f ] = −f, [e, f ] = x. (2.3)

It is known from the sl(2) representation theory that the gradation generated by x is a

good gradation. There are many good non–Dynkin gradations. Good gradations of simple

Lie algebras are classified in [7].

If one chooses x ∈ h, where h is the Cartan subalgebra of g, then the root elements of g

have a well defined grading. The gradation (2.1) generates the root system decomposition:

∆ =
⋃

j∈ 1
2

Z
∆j, where

∆j = {α ∈ ∆ |α(x) = j}. (2.4)

Define ∆> to be a set of roots corresponding to g>:

∆> = {α ∈ ∆ |α(x) > 0} =
⋃

j>0

∆j . (2.5)

In this paper we focus on the so called minimal gradations [22]. Minimal gradation is

a Dynkin gradation by adx

g = g−1 ⊕ g−1/2 ⊕ g0 ⊕ g1/2 ⊕ g1, (2.6)

such that g−1 and g1 are even one–dimensional spaces, i.e. g−1 = Cf and g1 = Ce, and

x = [e, f ].

Minimal gradations are obtained in the Lie algebra case by choosing sl(2) embedding

corresponding to the highest root θ: e = uθ, f = u−θ, where uθ is the highest root element

of g. In the Lie superalgebra case the construction is the same, θ is chosen to be the highest

root of one of the simple subalgebras of the even part of g.

Next we want to define the affine vertex algebra Vk(g) associated to the Lie superal-

gebra g. In order to proceed with a BRST quantization we should also introduce two sets

of ghost fields: the superghost system and the superfermion system.

3. Ingredients

In this section we introduce the main ingredients of the construction: affine vertex alge-

bra, superghost system, neutral superfermion system. The section may be red and used

independently from the other parts of the paper.
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3.1 Affine vertex algebra

Let g be a simple finite dimensional Lie superalgebra with an even nondegenerate super-

symmetric invariant bilinear form (.|.). One associates a current u(z) to every u ∈ g. The

collection of fields {u(z)}u∈g together with a level k ∈ C satisfying the following operator

product expansions

u(z) v(w) =
k (u|v)

(z − w)2
+

[u, v] (w)

z − w
, u, v ∈ g (3.1)

is called the universal affine vertex algebra Vk(g).

Fix a triangular decomposition g = n− ⊕ h ⊕ n+. The Weyl vector ρ is defined with

respect to a corresponding set of positive roots:

2 (ρ|αi) = (αi|αi), i = 1, 2, . . . , rank g, (3.2)

where αi are simple roots of g. The Weyl vector can be computed as

ρ =
1

2

∑

α∈∆+

(−1)p(α)α, (3.3)

where the sum is over the set of positive roots ∆+ and p(α) = 0 (respectively 1) for α even

(respectively odd).

The dual Coxeter number h∨ is defined as one half of the eigenvalue of the Casimir

operator in the adjoint representation. It can be calculated as

h∨ = (ρ|θ) +
1

2
(θ|θ), (3.4)

where θ is the highest root.

Let {ui} and {ui} be a pair of dual bases of g, i.e. (ui|uj) = δj
i . The energy–momentum

field for the affine vertex algebra Vk(g) is given by the Sugawara construction:

Lg =
1

2(k + h∨)

∑

i

:uiui: (3.5)

(assuming k 6= −h∨). The central charge of the Virasoro algebra generated by Lg is

cg =
k

k + h∨ sdimg. (3.6)

The currents u(z) are primary of conformal dimension 1 with respect to Lg(z). The mode

expansion of the affine currents is

u(z) =
∑

n∈ε(u)+Z

unz−n−1, (3.7)

where ε(u) ∈ R/Z is called the twisting of the field u. The operator product expansion (3.1)

leads to the commutation relations for the modes:

[um, vn] = m k δm+n,0 (u|v) + [u, v]m+n. (3.8)
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The choice of ε(u) should be consistent with the structure of g:

ε([u, v]) − ε(u) − ε(v) ∈ Z. (3.9)

In particular ε(u) = 0,∀u ∈ g (untwisted case) is always allowed. In this paper we will deal

only with the case ε(h) = 0 for all h ∈ h. (Although the case ε(h) = 1/2 for some h ∈ h is

not forbidden.) In this case all root elements uα, α ∈ ∆ have a well defined twisting. Then

there is a rank g continuous parameter family of twistings, defined as following:

ε(h) = 0, h ∈ h,

ε(uα) is any number in R/Z, α - simple root,
(3.10)

and the twistings for the basis elements corresponding to the non-simple roots are defined

by (3.9).

In the untwisted case (ε(u) = 0, ∀u ∈ g) the modes m and n in the commutation

relation (3.8) are integer. Then one recognizes that it is the defining Lie bracket of affine

superalgebra ĝ, the Kac–Moody affinization of g. The affine superalgebra ĝ is defined as an

infinite dimensional Lie superalgebra ĝ = g[t, t−1]⊕CK ⊕CD with commutation relations

[utm, vtn] = [u, v] tm+n + (u, v)m δm+n,0 K,

[D,atm] = matm, [K, ĝ] = 0,
(3.11)

where u, v ∈ g, m, n ∈ Z. Denoting un ≡ utn and choosing K = k I we return to the

commutation relation (3.8). D acts on ĝ as a minus zero mode of the Sugawara energy–

momentum field: D ∼ −Lg

0 .

The universal affine vertex algebra Vk(g) written in terms of field modes can be under-

stood as a generalization of the affine algebra ĝ to the case of arbitrary twisting. We will

denote it by g̃ and call it a twisted loop algebra. In many cases the twisted loop algebra g̃

is isomorphic to the untwisted one ĝ. In the case (3.10) the isomorphism ĝ → g̃ is given

by uα,n 7→ uα,n+ε(u), h(α)n 7→ h(α)n + k ε(uα) δn,0, n ∈ Z, h(α) ∈ h is the Cartan element

associated to the root α.

There are different choices of triangular decomposition of g̃. We choose a natural

generalization of the triangular decomposition in the untwisted case:1

g̃ = ñ− ⊕ h̃ ⊕ ñ+,

h̃ = C[{h0 | h ∈ h, ε(h) = 0} ∪ {K,D}],
ñ+ = C[{un |n > 0, u ∈ g} ∪ {u0 |u ∈ n+, ε(u) = 0}],
ñ− = C[{un |n < 0, u ∈ g} ∪ {u0 |u ∈ n−, ε(u) = 0}].

(3.12)

In the case ε(h) = 0 the set of positive roots ∆̂+ of g̃ is a disjoint union of2

{(α, 0,m) |α ∈ ∆−, m > 0, m ∈ ε(uα) + Z},
{(α, 0,m) |α ∈ ∆+, m ≥ 0, m ∈ ε(uα) + Z}, {(0, 0,m) |m > 0, m ∈ Z},

(3.13)

1Another choice is implemented in [24]
2We denote vectors in the root space by triples bα = (bα(h), bα(K), bα(D)).
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where the multiplicity of the last set is r = rank g. There are r + 1 simple roots. The

supersymmetric invariant bilinear form of g is extended to g̃ in the standard way:

(um|vn) = (u|v) δm+n,0,

(D|um) = 0, (K|um) = 0,

(D|D) = 0 = (K|K), (D|K) = 1,

u, v ∈ g,

m ∈ ε(u) + Z,

n ∈ ε(v) + Z.

(3.14)

The Weyl vector ρ̂ is defined by the set of r + 1 equations:

2(ρ̂|α̂i) = (α̂i|α̂i), α̂i − simple roots of g̃. (3.15)

The Weyl vector ρ̂ is not any more equal to (ρ, h∨, 0) in the twisted case.

Conjecture. Let g̃ be a twisted loop algebra with ε(h) = 0. Then the Weyl vector ρ̂

defined by (3.15) is given by ρ̂ = (ρ̃, h∨, 0), where

ρ̃ =
1

2

∑

α∈∆+

(−1)pαα(1 − 2εα) (3.16)

is a “twisted rho”, εα ≡ ε(uα).

We will prove this conjecture in a special case only in section 6.4.

A highest weight vector
∣∣ λ̂

〉
of weight λ̂ = (λ, k, 0) is annihilated by ñ+ and it is an

eigenvector of the generators of the Cartan subalgebra h̃:

ñ+
∣∣ λ̂

〉
= 0,

D
∣∣ λ̂

〉
= 0,

h0

∣∣ λ̂
〉

= λ(h)
∣∣ λ̂

〉
, h ∈ h,

K
∣∣ λ̂

〉
= k

∣∣ λ̂
〉
.

(3.17)

We would like to calculate the eigenvalue of Lg

0 on the highest weight vector
∣∣ λ̂

〉
. We

do it in the case ε(h) = 0. In this case ε(uα) + ε(u−α) ∈ Z. We will denote εα = ε(uα)

(then ε(uα) = ε−α) and choose

0 ≤ εα < 1, for α ∈ ∆+ and ε−α = −εα. (3.18)

In the Cartan–Weyl basis the energy–momentum field is written as

Lg =
1

2(k + h∨)

(
r∑

i=1

:hihi: +
∑

α∈∆

:uαuα:

)
. (3.19)

Using the formula (A.5) one can express the energy–momentum zero mode as

Lg

0 =
1

2(k + h∨)




r∑

i=1

(
∑

n∈−1−N0

hi
nhi,−n +

∑

n∈N0

hi,−nhi
n

)

+ 2
∑

α∈∆+

(
∑

m∈−εα−N0

uα
muα,−m + (−1)pα

∑

m∈1−εα+N0

uα,−muα
m

)

+
∑

α∈∆+

(−1)pα

(
k εα(1 − εα) + (1 − 2 εα)[uα, uα]0

)

 .

(3.20)
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The Lg

0 eigenvalue is

Lg

0

∣∣ λ̂
〉

=
1

2(k + h∨)

(
(λ|λ + 2ρ̃) + k

∑

α∈∆+

(−1)pαεα(1 − εα)
)∣∣ λ̂

〉
, (3.21)

where εα, α ∈ ∆+ are assumed to be in the range 0 ≤ εα < 1 and ρ̃ is a twisted “rho”

defined in (3.16).

Next we would like to generalize the determinant formula to the twisted case. In the

untwisted case the determinant formula for the contravariant form on the weight space

with weight λ̂ − η̂ of a Verma module Rbλ with highest weight λ̂ is given by (see [20, 23])

detbη(λ̂) =
∏

bα∈b∆+

∏

n∈N

(
(λ̂ + ρ̂|α̂) − n

2
(α̂|α̂)

)q(bα,n)P (bη−nbα) dimbgbα

, (3.22)

where P (τ) is the number of partitions of τ to the sum of positive roots, dim ĝbα is the

dimension of the root space ĝbα associated to the root α̂, and q(α̂, n) = (−1)p(bα)(n+1).

The above formula (3.22) is valid also in the twisted case, one has just to use the

twisted set of positive roots and the twisted ρ̂, defined by (3.15).

When g is a Lie superalgebra there are odd roots which lead to a cancellation of some

factors. If γ is an odd isotropic ((γ|γ) = 0) root then the correspondent factor does not

depend on n, and one can evaluate the product on n explicitly. If β is odd, but not isotropic

it is a half of an even root, and then some factors corresponding to β and to 2β cancel each

other. As a result one expresses the determinant formula (3.22) in the more explicit way

(see [23]):

detbη(λ̂) = (k + h∨)
P

m,n∈N
P (bη−(0,0,mn))

∏

n∈N

∏

bα

(
(λ̂ + ρ̂|α̂) − n

2 (α̂|α̂)
)P (bη−nbα)

×

×
∏

n∈1+2N0

∏

bβ

(
(λ̂ + ρ̂|β̂) − n

2 (β̂|β̂)
)P (bη−nbβ) ∏

bγ
(λ̂ + ρ̂|γ̂)Pbγ(bη−bγ) ,

(3.23)

where α̂ = (α, 0,m) runs on even positive roots, such that α 6= 0 and 1
2 α̂ is not an odd root;

β̂ runs on odd positive roots, such that 2β̂ is an even root; γ̂ runs on odd positive roots,

such that 2γ̂ is not a root (then (γ̂|γ̂) = 0); Pbγ is a number of partitions not involving γ̂.

3.2 Superghost system

Let A be a finite dimensional vector superspace. (In application to the quantum reduction

A = g> with flipped parity.) Let Ach = A ⊕ A∗, define an even skew–supersymmetric

non–degenerate bilinear form <. , . >ch on Ach by

<A,A>ch = 0 = <A∗, A∗>ch

<a, b∗>ch = −(−1)p(a)p(b∗)<b∗, a>ch = b∗(a)
(3.24)

for a ∈ A, b∗ ∈ A∗. We introduce a system of local fields {c(z), b(z)} (c ∈ A, b ∈ A∗), called

a superghost3 system, subject to the following operator product expansion:

c(z) b(w) =
1

z − w
<c, b>ch. (3.25)

3“Charged free superfermions” in notation of [22] and [23]; b-c or β-γ system in the physical literature.
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The vertex algebra of superghost fields is denoted by F (Ach).

Let {ci} and {bi} be the bases of A and A∗ such that <ci, b
j>ch = δj

i . Then the

superghost system decouples to a set of mutually commuting ghost pairs:

ci(z) bj(w) =
1

z − w
δj
i . (3.26)

A family of energy-momentum fields parameterized by {∆(bj)} is defined by

Lch = −
∑

i

∆(bi):bi∂ci: +
∑

i

(1 − ∆(bi)):∂bici:. (3.27)

The field Lch(z) generates the Virasoro algebra with central charge

cch = 2
∑

i

(−1)p(bi)
(
6∆(bi)2 − 6∆(bi) + 1

)
. (3.28)

With respect to Lch the ghost field bi(z) (respectively ci(z)) is primary of conformal di-

mension ∆(bi) (respectively 1 − ∆(bi)).

The superghost system is called ε–twisted if its fields have the following mode expan-

sions:

ci(z) =
∑

n∈ε(ci)+∆(bi)+Z

ci,nz−n−1+∆(bi), bi(z) =
∑

n∈ε(bi)−∆(bi)+Z

bi
nz−n−∆(bi). (3.29)

The operator product expansion (3.26) can be written in terms of commutation relations

for the modes:
[
ci,m, bj

n

]
= δj

i δn+m,0 ,
m ∈ ε(ci) + ∆(bi) + Z,

n ∈ ε(bj) − ∆(bj) + Z.
(3.30)

We see from here, that ε(bi) + ε(ci) ∈ Z. We will choose ε(bi) = −ε(ci).

A vacuum vector
∣∣ 0

〉
ch

is defined by the set of conditions:

ci,m

∣∣ 0
〉
ch

= 0, m ≥ ∆(bi),

bi
n

∣∣ 0
〉
ch

= 0, n > −∆(bi).
(3.31)

The energy-momentum zero mode becomes

Lch
0 =

∑

i


−(−1)p(bi)

ε(ci)

2
(2∆(bi) + ε(ci) − 1) −

∑

m∈−∆(bi)−ε(ci)−N0

m bi
mci,−m

−(−1)p(bi)
∑

m∈−∆(bi)+1−ε(ci)+N0

m ci,−mbi
m


 .

(3.32)

The first term only contributes to the vacuum energy, assuming ε is taken in the range

0 ≤ ε(ci) < 1 (ε(ci) = 0 corresponds to the untwisted case), i.e.

Lch
0

∣∣ 0
〉
ch

=
∑

i

(
−(−1)p(bi)

ε(ci)

2
(2∆(bi) + ε(ci) − 1)

) ∣∣ 0
〉
ch

. (3.33)

See also ref. [6] where the fermionic and bosonic ghost systems are also discussed in

the case of twisted boundary conditions.
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3.3 Neutral free superfermion system

Let A = A0̄ ⊕A1̄ be a finite dimensional superspace with a nondegenerate skew-symmetric

even bilinear form < . , .>ne, i.e. it is skew-symmetric on A0̄ and symmetric on A1̄ and

<A0̄, A1̄>ne = 0. A set of fields {ψ(z)}ψ∈A is called a system of neutral free superfermions,

if the fields satisfy the following operator product expansions:

ψ(z)φ(w) ∼ 1

z − w
<ψ,φ>ne, ψ, φ ∈ A. (3.34)

The vertex algebra of neutral free superfermions is denoted by F (Ane). In application to

the quantum reduction A = g1/2 and the bilinear form is defined by

<u, v>ne = (f | [u, v]), (3.35)

where u, v ∈ g1/2 and f ∈ g−1 is a good element.

The energy–momentum field for the neutral free superfermion system is

Lne =
1

2

∑

i

:∂ψiψi: =
1

2

∑

i

(−1)p(ψi):ψi∂ψi:, (3.36)

where {ψi} and {ψi} are dual bases of A:

<ψi, ψ
j>ne = δj

i

(
then <ψi, ψj>ne = −δj

i (−1)p(ψi)
)

. (3.37)

The central charge of the Virasoro algebra generated by Lne is

cne = −1

2
sdimA. (3.38)

The neutral free superfermions are primary fields of conformal dimension 1/2 with respect

to Lne.

The superfermion fields have the following mode expansions:

ψ(z) =
∑

n∈ε(ψ)−1/2+Z

ψnz−n−1/2. (3.39)

Commutation relations derived from (3.34) read

[ψn, φm] = <ψ,φ> δn+m,0, ψ, φ ∈ A,

n ∈ ε(ψ) − 1/2 + Z, m ∈ ε(φ) − 1/2 + Z.
(3.40)

The consistency condition on twistings is

ε(ψ) + ε(φ) ∈ Z, if <ψ,φ> 6= 0. (3.41)

The vacuum vector
∣∣ 0

〉
ne

is defined by the following conditions:4

ψn

∣∣ 0
〉
ne

= 0, n > 0, ψ ∈ A. (3.42)

4A different set of annihilation operators is chosen in [24].
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If there are zero modes (it happens when ε(ψ) = 1/2 for some ψ ∈ A.) one has to specify

their action on the vacuum vector in order to complete the definition.

Next we would like to calculate the Lne
0 eigenvalue on the vacuum vector. Using

formula (A.5) one gets the following expression for the energy–momentum zero mode:

Lne
0 =

1

2

∑

i


(−1)p(ψi)

∑

n∈−1/2+ε(ψi)−N0

(n − 1

2
)ψi,nψi

−n

+
∑

n∈1/2+ε(ψi)+N0

(n − 1

2
)ψi

−nψi,n − (−1)p(ψi)
1

2
ε(ψi)

(
ε(ψi) − 1

)

 .

(3.43)

If −1/2 < ε(ψi) < 1/2 then ψi contributes −1/4(−1)p(ψi)ε(ψi)
(
ε(ψi) − 1

)
to the Lne

0

vacuum eigenvalue. The case ε(ψi) = 1/2 should be treated separately. Since
∑

i ψi,0ψ
i
0 =

−∑
i(−1)p(ψi)ψi

0ψi,0 the first term in (3.43) contributes −1/8(−1)p(ψi) to the eigenvalue,

and the overall contribution is −1/16(−1)p(ψi). Finally we have

Lne
0

∣∣ 0
〉
ne

=

(
∑

i

hne
i

)
∣∣ 0

〉
ne

, (3.44)

where

hne
i =

{
− 1/4(−1)p(ψi)ε(ψi)

(
ε(ψi) − 1

)
, −1/2 < ε(ψi) < 1/2,

− 1/16(−1)p(ψi), ε(ψi) = 1/2.
(3.45)

In particular the Lne
0 vacuum eigenvalue is equal to zero when all the superfermions are

untwisted, and equal to −1/16 sdimA when ε(ψ) = 1/2 for all ψ ∈ A.

4. Quantum reduction

The details of the construction can be found in [22, 23], we reproduce here only main points

and results.

4.1 Homology complex

Let g be a simple Lie superalgebra with a good gradation on it, generated by an element

x ∈ g, as described in section 2. Then one introduces three types of vertex algebras: the

affine vertex algebra Vk(g) (section 3.1), the superghost algebra F (Ach) (section 3.2), and

the superfermion algebra F (Ane) (section 3.3).

If the Cartan subalgebra h is untwisted (this is always assumed in the current paper),

then the root elements have a well defined twisting. If in addition one chooses x ∈ h, then

the root elements have also a well defined grading by x, and it is convenient to use the

Cartan–Weyl basis of g in the calculations.

Let ∆+ be the set of positive roots compatible with the chosen gradation, i.e. α(x) ≥ 0

if α ∈ ∆+. Let ∆j (respectively ∆>) be a set of roots corresponding to gj (respectively

g>) as defined in (2.4) and in (2.5).

The base space for the superghost algebra is the g> space with flipped parity. One

introduces a b-c pair for each α ∈ ∆>. The parity of the b-c pair is p(bα) = p(uα)+1, i.e. it
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is odd, if uα is even, and even if uα is odd. The parameter ∆(bα) = 1−∆(cα) is chosen to

be equal to the gradation:

∆(bα) = j if uα ∈ gj. (4.1)

Then the central charge (3.28) of the superghost Virasoro algebra becomes

cch = −2
∑

j∈ 1
2

N

sdim gj

(
6j2 − 6j + 1

)
. (4.2)

For any basis element uα, α ∈ ∆1/2 of g1/2 one should also add a neutral superfermion

with the same parity as uα. The bilinear form on g1/2 is given by (3.35).

Now we are ready to introduce an odd field d(z) in the vertex algebra C(g, x, k) =

Vk(g) ⊗ F (Ach) ⊗ F (Ane):

d =
∑

α∈∆>

(−1)pα uαbα − 1

2

∑

α,β,γ∈∆>

(−1)pαpγ f γ
αβ cγbαbβ +

∑

α∈∆>

(f |uα)bα +
∑

α∈∆1/2

bαψα, (4.3)

where pα = p(uα) and f γ
αβ are structure constants of g:

[uα, uβ] = f γ
αβuγ . (4.4)

The normal ordering is not necessary since all the fields are commutative in the d(z)

monomials.

The key feature of the field d(z) is that the singular part of its operator product

expansion with itself vanishes:

d(z)d(w) = regular in (z − w) . (4.5)

The proof can be found in [22] (Theorem 2.1).

Define an operator d0 on C(g, x, k) to be the first order pole in the operator product

expansion of d(z) with a field from C:

d(z)φ(w) = . . . +
(d0φ)(w)

z − w
+ . . . (4.6)

One can deduce from the associativity condition of operator product expansions that d0 is

an odd derivation of an operator product expansion, i.e.

d0[φ1φ2]
(q) = [(d0φ1)φ2]

(q) + (−1)p(φ1)[φ1(d0φ2)]
(q) , (4.7)

where [AB](q) is a pole of order q in the operator product expansion of A with B:

A(z)B(w) =
∑

l=−N(A,B)+N0

[AB](−l)(z − w)l. (4.8)

In particular d0 is an odd derivation with respect to the normal ordered product :φ1φ2: =

[φ1φ2]
(0).

The following crucial feature of d0:

d2
0 = 0 (4.9)
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is an immediate consequence of (4.5) and (4.7).

Next one builds a homology complex (C(g, x, k), d0) (“BRST cohomology” in physical

literature) of vertex algebra C with respect to d0. The homology of the complex

H(C, d0) = Ker d0/Im d0 (4.10)

is a vertex algebra, the quantum reduction of g with respect to x. It is denoted Wk(g, x).

A charge can be assigned to the fields in C:

charge Vk(g) = 0, charge F (Ane) = 0, charge b = −1, charge c = 1. (4.11)

Then the vertex algebra C(g, x, k) has charge decomposition

C(g, x, k) =
⊕

m∈Z

Cm . (4.12)

The field d(z) has charge −1, hence d0 lowers the charge by 1: d0(Cm) ⊂ Cm−1 and

(C(g, x, k), d0) is a Z-graded homology complex.

4.2 Twist gluing

We have three commuting vertex algebras: Vk(g), F (Ach) and F (Ane). Each of them can

be twisted in a self-consistent way as described in section 3. However in the quantum

reduction procedure these twistings should be related. The restrictions come from the

demand that the field d(z) should be untwisted. Denote εα = ε(uα), where α is a positive

root of g. Then (since we consider the case, when the Cartan subalgebra is untwisted) we

choose ε(u−α) = −εα for α ∈ ∆+. From the first term in d(z) (4.3) we see that ε(bα) = −εα

and therefore (see section 3.2) ε(cα) = εα. Let e ∈ g be an element dual to f , then we

obtain from the third term in (4.3), that the ghost field b associated to e is untwisted

and therefore e and f themselves are also untwisted. From the last term one gets that

ε(ψα) = εα. Finally, we conclude that all the possible twistings are parameterized by

r = rank g numbers εα, α are the simple roots of g, modulo the condition that ε(e) = 0.

There are two cases of particular interest in physics: the Neveu–Schwarz (NS) sector

and the Ramond sector. These sectors may be defined for a good gradation on any Lie

superalgebra g. The NS sector is simply the untwisted case: ε(u) = 0, ∀u ∈ g. The

Ramond sector is defined by the following twistings:

ε(u) =

{
0, u ∈ gj , j ∈ Z,

1/2, u ∈ gj , j ∈ 1/2 + Z.
(4.13)

4.3 Structure of the W-algebra

Here we reproduce the results of [22, 23] on the structure of Wk(g, x). The first fact is that

the Virasoro algebra is always contained in Wk(g, x). It is generated by the field L(z):

L = Lg + Lch + Lne + ∂x, (4.14)

where Lg, Lch, Lne are the energy–momentum fields from sections 3.1, 3.2, 3.3 respectively.

Due to the ∂x term the conformal dimensions of affine currents are shifted from 1 with
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respect to the Virasoro field L(z): the field u(z) is of dimension 1 − j if u ∈ gj. Then one

can easily check that d(z) is of dimension 1 with respect to L(z) and therefore d0L = 0

and that L is not in Im d0. The central charge of the Virasoro algebra generated by L(z)

is
c = cg + cch + cne − 12k(x|x)

=
k sdimg

k + h∨ − 2
∑

j>0

sdim gj

(
6j2 − 6j + 1

)
− 1

2
sdim g1/2 − 12k(x|x)

(4.15)

The structure of the W-algebra Wk(g, x) is described in the main theorem of [23]

(Theorem 4.1). Let gf = {u ∈ g| [u, f ] = 0} be the centralizer of f in g. Denote

J (v) = v +
∑

α,β∈∆>

(−1)pβ f β
vα:cβbα:, (4.16)

where v ∈ g and f β
vα are the structure constants of g: [v, uα] =

∑
β∈∆ f β

vαuβ. The theorem

states that

1. The only nontrivial homology lies in C0:

Hl(C(g, x, k), d0) = 0, if l 6= 0,

H0(C(g, x, k), d0) = Wk(g, x);
(4.17)

2. The W-algebra Wk(g, x) is strongly generated by homology classes of fields J{ai}

where ai ∈ gf , i = 1, 2, . . . ,dim gf is a basis of gf compatible with the gradation;

3. If a ∈ g−j then the field J{a} is of dimension 1 + j with respect to L(z) and J{a} is

equal to J (a) plus a linear combination of normal ordered products of the fields J (b),

where b ∈ g−s, 0 ≤ s < j, the fields ψα, α ∈ ∆1/2 and their derivatives.

The Virasoro field L(z) (4.14) is in the same homology class as J{f}(z), and since

f ∈ gf the field L(z) is always part of the W-algebra Wk(g, x).

In the case of a good gradation gf ⊂ g≤, therefore the conformal dimensions of the

generating fields are greater or equal to 1. This is in agreement with the result of [8], that

dimension 1/2 fields can be factored out from a W-algebra.

4.4 Highest weight modules of the W-algebra

In this section we are going to discuss highest weight representations of W-algebras Wk(g, x)

in a framework of quantum reduction. The discussion applies to a general twisted case.

A highest weight vector of the vertex algebra C(g, x, k) = Vk(g) ⊗ F (Ach) ⊗ F (Ane) is

given by ∣∣ λ
〉
k

=
∣∣ λ̂

〉
×

∣∣ 0
〉
ch

×
∣∣ 0

〉
ne

. (4.18)

The full highest weight module Qk(λ) is obtained by applying affine, superghost and su-

perfermion creation operators to the highest weight vector.
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One introduces highest weight representations of Wk(g, x) in the following way. First

define the mode expansions of the generating fields:

J{u}(z) =
∑

n∈−∆(u)+ε(u)+Z

J{u}
n z−n−∆(u), (4.19)

where ∆(u) = 1 + j, if u ∈ g−j, is the conformal dimension of the field J{u}(z) with

respect to the Virasoro field (4.14). The W-algebra highest weight vector is annihilated

by positive modes of all the fields forming the W-algebra (Wn, n > 0,W ∈ Wk(g, x)). One

should also treat the zero modes. First choose a set of mutually commuting (in strong

or weak sense) zero modes which is called a set of Cartan generators. Two operators

are called commutative in weak sense if their commutator is zero modulo terms which

annihilate highest weight vectors. (An example of the W-algebra with Cartan generators

commutative in weak sense is studied in [28].) The highest weight vector is an eigenvector

of the Cartan generators and it is labelled by the eigenvalues of the Cartan operators.

Some of the non Cartan zero modes should also annihilate the highest weight vector.

One can check that the positive modes of the fields J{u}(z) annihilate the vector
∣∣λ

〉
k

defined in (4.18):

J{u}
n

∣∣λ
〉
k

= 0, n > 0, u ∈ gf . (4.20)

So this vector can be chosen as a highest weight vector of the W-algebra.

It is easy to see that the highest weight vector is d0 closed:

d0

∣∣ λ
〉
k

= 0. (4.21)

To get the W-algebra module Mk(λ) one should take the d0 homology of the C module:

Mk(λ) = H(Qk(λ), d0).

The charge decomposition (4.12) is extended to the Qk(λ) module by a field–state

correspondence (charge of the highest weight vector
∣∣λ

〉
k

is taken to be zero). Then again

only the zero charge homology of the complex (Qk(λ), d0) is nontrivial (see Theorem 6.2

of [23]), and one has

Mk(λ) = H0(Qk(λ), d0). (4.22)

Suppose there is a singular vector
∣∣ ŝ

〉
in a highest weight module Rbλ of the twisted

loop algebra g̃. Then the vector
∣∣ s

〉
k

=
∣∣ ŝ

〉
×

∣∣ 0
〉
ch

×
∣∣ 0

〉
ne

(4.23)

is a singular vector in the C(g, x, k) algebra module Qk(λ). This vector is d0 closed and is

annihilated by positive modes of the Wk(g, x) algebra generators, therefore (if it is not d0

exact) the vector
∣∣ s

〉
k

is also a singular vector in the W-algebra module Mk(λ).

5. Minimal W-algebras

5.1 Structure

In the case of minimal gradation (see section 2) gf can be easily described:

gf = Cf ⊕ g−1/2 ⊕ g
\
0, (5.1)
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where g
\
0 = {u ∈ g0|(u|x) = 0} is a subspace of g0, orthogonal to x with respect to the

even invariant bilinear form: g0 = Cx ⊕ g
\
0. Then the Wk(g, x) algebra is generated by a

Virasoro field, a number of dimension 3/2 fields and a number of dimension 1 fields. In

the case of minimal gradation (x|x) = 1/2, so one can rewrite the formula for the central

charge (4.15) in the simple form:

c =
k sdimg

k + h∨ − 6k +
1

2
sdim g1/2 − 2. (5.2)

The dimension 1 fields are given by (Theorem 2.1 of [23])

J{v} = J (v) − 1

2

∑

α,β∈∆1/2

(−1)pβ f β
vα:ψβψα:, v ∈ g

\
0 , (5.3)

and the dimension 3/2 fields are given by

G{v} = J (v) − (−1)pv

3

∑

α,β∈∆1/2

:ψαψβψ[uβ ,[uα,v]]: +
∑

α∈∆1/2

J ([v,uα])ψα

−
∑

α∈∆1/2

(
k(v|uα) + strg>(adv aduα)

)
∂ψα, v ∈ g−1/2 ,

(5.4)

where ψu means
∑

α aαψα if u =
∑

α aαuα.

The explicit form of operator product expansions of the W-algebra, corresponding to

the minimal gradation, is given in Theorem 5.1 of [23]. The dimension-1 fields form a

subalgebra with operator product expansions:

J{a}(z)J{b}(w) =
(a|b)(k + 1

2h∨) − 1
4 strg0(ada adb)

(z − w)2
+

J{[a,b]}(w)

z − w
, (5.5)

where k is the level of g and a, b ∈ g
\
0. If g

\
0 is simple then the subalgebra is an affine vertex

algebra in the definition of section 3.1. The operator product expansion of J and G is:

J{v}(z)G{u}(w) =
G{[v,u]}

z − w
, (5.6)

here v ∈ g
\
0 and u ∈ g−1/2. The fusion rule for two dimension 3/2 fields:

G × G = L + J + :JJ :, (5.7)

and their explicit operator product expansion can be found in Theorem 5.1(e) of [23].

The algebras of “minimal” type were studied from a different point of view in [13,

14]. The classification of minimal gradations on simple Lie superalgebras (see tables in

Proposition 4.1 of [22]) gives also a classification of minimal W-algebras.

We have the following set of operators generating the W-algebra:

Ln, n ∈ Z,

G{u}
r , u ∈ g−1/2, r ∈ 1/2 + ε(u) + Z,

J{v}
m , v ∈ g

\
0, m ∈ ε(v) + Z.

(5.8)
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The Cartan subalgebra is a span of

{L0} ∪ {J{v}
0 |v ∈ h\}, (5.9)

where h\ is a subspace of h, orthogonal to x with respect to the bilinear form (.|.):
h = Cx ⊕ h\.

The Cartan generators act diagonally on the other generators. One can introduce

roots of the W-algebra. They consist of two components: the first is an eigenvalue of

ad J
{v}
0 , v ∈ h\, the second is an eigenvalue of ad L0. Then the root system ∆W of the

minimal W-algebra Wk(g, x) is a disjoint union of

{(α,m) |α ∈ ∆0,m ∈ εα + Z},
{(α\,m) |α ∈ ∆1/2,m ∈ 1

2 + εα + Z}, {(0,m) |m ∈ Z}, (5.10)

where the multiplicity of the last set is r = rank g, and α\ is the orthogonal projection of

α: α\ = α − 1
2 (α|θ).

There exists an anti-involution ω on a minimal W-algebra. It is defined as

ω(Ln) = L−n,

ω(J{v}
n ) = J

{v}
−n , v ∈ h\,

ω(J{vα}
n ) = J

{v−α}
−n , α ∈ ∆0,

ω(G
{uβ}
n ) = G

{u−θ−β}
−n , β ∈ ∆−1/2.

(5.11)

The proof that it is indeed an anti-involution can be found in section 6 of [23].

5.2 Representation theory

A highest weight vector
∣∣ Λ, h

〉
is defined by

Ln, G{u}
n , J{v}

n

∣∣ Λ, h
〉

= 0, n > 0,

L0

∣∣ Λ, h
〉

= h
∣∣ Λ, h

〉

J
{v}
0

∣∣ Λ, h
〉

= Λ(v)
∣∣ Λ, h

〉
, v ∈ h\.

(5.12)

The zero modes which are not in the Cartan subalgebra (if there are such modes) should

be treated separately. We want to split ∆0 and ∆1/2 to positive and negative parts. The

splitting of ∆0 is naturally given by a set of positive roots of g: ∆+
0 = ∆+ ∩ ∆0. To split

∆1/2 one has to choose h0 ∈ h\ such that

α(h0) > 0, ∀α ∈ ∆+
0 ,

α(h0) 6= 0, ∀α ∈ ∆1/2 (except α = θ/2).
(5.13)

We introduce

∆+
j = {α |α ∈ ∆j and α(h0) > 0},

∆−
j = {α |α ∈ ∆j and α(h0) < 0},

j = −1/2, 0, 1/2. (5.14)
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The root 1
2θ (if there is such a root) does not belong to ∆+

1/2 ∪ ∆−
1/2. Note that there can

be a few choices of the ∆1/2 splittings corresponding to the same ∆+
0 .

Now we complete the definition of a highest weight vector:

J
{α}
0

∣∣ Λ, h
〉

= 0, α ∈ ∆+
0 , εα = 0,

G
{β}
0

∣∣ Λ, h
〉

= 0, β ∈ ∆+
−1/2, εβ = 1/2,

(5.15)

where we denote J{α} = J{vα}, G{β} = G{uβ}. If θ/2 ∈ ∆ and εθ/2 = 1/2, then there is a

fermionic operator G
{−θ/2}
0 . It commutes with Cartan generators and therefore the highest

weight vector
∣∣ Λ, h

〉
is its eigenvector:

G
{−θ/2}
0

∣∣ Λ, h
〉

= g(Λ, h)
∣∣ Λ, h

〉
. (5.16)

The eigenvalue g(Λ, h) can be calculated from the
[
G

{−θ/2}
0 , G

{−θ/2}
0

]
bracket.

In the quantum reduction procedure the highest weight vector
∣∣ Λ, h

〉
is given by

∣∣ Λ, h
〉

=
∣∣ λ̂

〉
×

∣∣ 0
〉
ch

×
∣∣ 0

〉
ne

, (5.17)

where Λ and h are functions of λ and k, which are calculated below. But first we should

complete the definition of the superfermion vacuum
∣∣ 0

〉
ne

(see 3.42) by specifying the

action of superfermion zero modes on it in agreement with the second line in (5.15). From

the last term in (5.4) and since the dual superfermion is ψα = ψθ−α we get that

ψα,0

∣∣ 0
〉
ne

= 0, α ∈ ∆+
1/2, εα = 1/2. (5.18)

It is easy to see that this is also sufficient condition for the second equation in (5.15). The

fermion ψθ/2 is self dual, so
[
ψ

θ/2
0 , ψ

θ/2
0

]
= 1 (if uθ/2 is appropriately normalized), then

ψ
θ/2
0

∣∣ 0
〉
ne

= 1√
2

∣∣ 0
〉
ne

.

Now we are ready to calculate the Λ(λ, k) and h(λ, k) dependence. From (4.14) we get

h = hg + hch + hne − 1

2
(λ|θ), (5.19)

where (see (3.21), (3.33) and (3.45))

hg =
1

2(k + h∨)

(
(λ|λ + 2ρ̃) +

∑

α∈∆+

(−1)pαk εα(1 − εα)
)
, (5.20)

hch =
1

2

∑

α∈∆1/2

(−1)pαε2
α, (5.21)

hne = −1

4

∑

α∈∆1/2

(−1)pα(εα − 1)(εα − 2Θ(εα − 1/2)). (5.22)

All εα are assumed to be in the range 0 ≤ εα < 1; Θ(x) is the step function:

Θ(x) =





1, x > 0

1/2, x = 0

0, x < 0

(5.23)
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To calculate Λ(v) we rewrite (5.3) for the case v ∈ h\:

J{v} = v +
∑

α∈∆>

(−1)pαα(v):cαbα: − 1

2

∑

α∈∆1/2

(−1)pαα(v):ψαψα:, v ∈ h\. (5.24)

Then using the formula (A.5) and the definitions of
∣∣ 0

〉
ch

(3.31) and
∣∣ 0

〉
ne

(3.42)

Λ(v) = λ\(v) − 1

2

∑

α∈∆1/2

(−1)pαα(v)(εα + κα), (5.25)

where again 0 ≤ εα < 1, and κα is the eigenvalue of the ψα,−1/2+εα
ψα

1/2−εα
operator:

κα =





0, 0 ≤ εα < 1/2,

0, εα = 1/2, α ∈ ∆−
1/2

,

1, εα = 1/2, α ∈ ∆+
1/2,

1, 1/2 < εα < 1.

(5.26)

and λ\ is the projection of λ orthogonal to θ:

λ = λ\ +
1

2
(λ|θ)θ, (λ\|θ) = 0. (5.27)

Then λ(v) = λ\(v), if v ∈ h\.

We are interested mainly in two twistings:

NS sector: εα = 0 ∀α ∈ ∆, (5.28)

Ramond sector: εα =

{
1/2, α ∈ ∆1/2,

0, α ∈ ∆0 or α = θ.
(5.29)

In the NS sector the modes of dimension-3/2 generators are in 1/2+Z, the modes of other

generators are integer. In the Ramond sector all the modes are integer. In these cases the

λ, k dependence of weights Λ and h is easily expressed:

NS:

Λ = λ\,

h =
(λ|λ + 2ρ)

2(k + h∨)
− 1

2
(λ|θ),

(5.30)

R:

Λ = λ\ − ρ\
1/2,

h =
(λ|λ + 2ρ0)

2(k + h∨)
+ sdim g1/2

(
1

16
+

k

8(k + h∨)

)
− (λ|θ) (k + h∨ − 1)

2(k + h∨)
,

(5.31)

where ρ1/2 and ρ0 are the “rho” vectors for ∆+
1/2 and ∆+

0 respectively:

ρ1/2 =
1

2

∑

α∈∆+
1/2

(−1)pαα, (5.32)

ρ0 =
1

2

∑

α∈∆+
0

(−1)pαα = ρ\. (5.33)
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We introduce a contravariant bilinear form B(
∣∣ a

〉
,
∣∣ b

〉
) (with respect to the anti-

involution (5.11)) on the W-algebra Verma module Mk(Λ, h) with highest weight vector∣∣ Λ, h
〉
. Contravariance means that B(J

∣∣ a
〉
,
∣∣ b

〉
) = B(

∣∣ a
〉
, ω(J)

∣∣ b
〉
), for J ∈ Wk(g, x)

and
∣∣ a

〉
,
∣∣ b

〉
∈ Mk(Λ, h). The form is normalized by B(

∣∣ Λ, h
〉
,
∣∣Λ, h

〉
) = 1. The kernel of

the contravariant form B is a maximal submodule of Mk(Λ, h). In the next section we use

this property to compute the determinant of this form.

6. Determinant formula for minimal W-algebras

This section contains the main result of the current paper: the determinant formula for

minimal W-algebras in the twisted case. First we state the result: the determinant formula

for the NS sector (untwisted case) is presented in section 6.1, it was obtained by Kac and

Wakimoto in [23] and is also derived in section 6.4. Section 6.2 contains the determinant

formula for the Ramond sector, in which modes of all the fields are integer. We also include

the lengthy formula for the general twisted case in section 6.3. In section 6.4 we prove these

determinant formulas.

Before we proceed to the determinant expressions we would like to remind to the reader

some notation: h is an eigenvalue of the Virasoro field zero mode L0 on the highest weight

vector, Λ(v) is the eigenvalue of the dimension 1 fields J
{v}
0 , v ∈ h\. The number r = rank g.

ρ0 and ρ1/2 are the “rho” vectors for ∆+
0 and ∆+

1/2 respectively, they are given by (5.32)

and (5.33). The partition function PW (τ̂ ) is a number of partitions of τ̂ to a sum of positive

roots of the W-algebra, where as usual odd roots appear maximum one time in the sum.

The function q(α, n) in the degrees is

q(α, n) = (−1)pα(n+1), (6.1)

i.e. it is equal to −1 if α is odd and n is even, and equal to 1 otherwise.

We would like to stress here that the determinants are polynomials in Λ and h. If

q(α, n) = −1 then the degree of the corresponding factor is negative; it means that the

factor cancels some other factor as it is explained below. (And exactly as it happens in

the twisted loop algebra determinant formula (3.23)). Odd roots of a lie superalgebra are

of two types: isotropic ((α|α) = 0) or a half of an even root. If the root α is isotropic,

then the corresponding factor N α
n,m does not depend on n and the product over n can be

evaluated explicitly:

∏

n∈N

(N α
n,m)q(α,n)PW (bη−n(α\,m)) = (N α

1,m)P
bα
W (bη−(α\,m)), (6.2)

where α̂ = (α\,m) and P bα
W (τ̂ ) is the number of partitions of τ̂ to the sum of the W-algebra

positive roots not including the root α̂ itself.

If the root α is a half of an even root, then the factor N α
n,m cancels one of the factors
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corresponding to the root 2α. For example, if there is a root θ/2 then one can express

∏

m,n∈N

N θ
n,m(k,Λ, h)PW (bη−(0,mn))

∏

n∈N,
m∈ 1

2
+εθ/2+N0

N θ/2
n,m (k,Λ, h)q(θ/2,n)PW (bη−(0,mn)) =

=
∏

m,n∈N,
m−n∈2Z+2εθ/2

νn,m(k,Λ, h)PW (bη−(0, mn
2

)),
(6.3)

where εθ/2 = 0 in the NS case and εθ/2 = 1/2 in the Ramond case, and

νn,m(k,Λ, h) ≡ N θ
n
2

,m(k,Λ, h) = N θ/2
n, m

2
(k,Λ, h). (6.4)

Taking into account all the above remarks we proceed to the determinant formulae.

6.1 NS sector

Let η̂ = (η, s), η ∈ h\∗, s ∈ 1
2Z. The determinant detNS

bη (k,Λ, h) of the Verma module with

highest weight (Λ, h) on the weight space (Λ − η, h + s) is given by

detNS
bη (k,Λ, h) = (k + h∨)(r−1)

P
m,n∈N

PW (bη−(0,mn))
∏

m,n∈N

N θ
n,m(k,Λ, h)PW (bη−(0,mn))

×
∏

β∈∆0
m,n∈N

N β
n,m(k,Λ)q(β,n)PW (bη−n(β,m))

∏

β∈∆+
0

n∈N

N β
n,0(k,Λ)q(β,n)PW (bη−n(β,0))

×
∏

α∈∆1/2

m∈ 1
2
+N0,n∈N

N α
n,m(k,Λ, h)q(α,n)PW (bη−n(α\,m)),

(6.5)

where

N β
n,m(k,Λ) =(Λ + ρ0|β) + m(k + h∨) − n

2 (β|β), β ∈ ∆0, (6.6)

N α
n,m(k,Λ, h) =h − 1

4(k + h∨)

((
2(Λ + ρ0|α\) + 2m(k + h∨) − n(α|α)

)2

+ 2(Λ|Λ + 2ρ0) − (k + 1)2
)
, α ∈ ∆1/2, (6.7)

N θ
n,m(k,Λ, h) =h − 1

4(k + h∨)

((
m(k + h∨) − n

)2
+ 2(Λ|Λ + 2ρ0) − (k + 1)2

)
. (6.8)

The partition function PW (η) is defined with respect to the root system ∆W of the

untwisted (NS) sector of the vertex algebra Wk(g, x). The set of positive roots ∆+
W is a

disjoint union of

{(α,m)|α ∈ ∆0,m ∈ N}, {(α, 0)|α ∈ ∆+
0 },

{(α\,m)|α ∈ ∆1/2,m ∈ 1
2 + N0}, {(0,m)|m ∈ N}, (6.9)

where the multiplicity of the last set is r = rank g.
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6.2 Ramond sector

Let η̂ = (η, s), η ∈ h\∗, s ∈ Z. The determinant detRbη (k,Λ, h) of the Verma module with

highest weight (Λ, h) on the weight space (Λ − η, h + s) is given by

detRbη (k,Λ, h) = (k + h∨)(r−1)
P

m,n∈N
PW (bη−(0,mn))

∏

m,n∈N

N θ
n,m(k,Λ, h)PW (bη−(0,mn))

×
∏

β∈∆0
m,n∈N

N β
n,m(k,Λ)q(β,n)PW (bη−n(β,m))

∏

β∈∆+
0

n∈N

N β
n,0(k,Λ)q(β,n)PW (bη−n(β,m))

×
∏

α∈∆1/2

m,n∈N

N α
n,m(k,Λ, h)q(α,n)PW (bη−n(α\,m))

∏

α∈∆+
1/2

n∈N

N α
n,0(k,Λ, h)q(α,n)PW (bη−n(α\,0)),

(6.10)

where

N β
n,m(k,Λ) =(λ\ + ρ0|β) + m(k + h∨) − n

2 (β|β), β ∈ ∆0, (6.11)

N α
n,m(k,Λ, h) =h − 1

4(k + h∨)

((
2(λ\ + ρ0|α\) + 2m(k + h∨) − n(α|α)

)2

+ 2(λ\|λ\ + 2ρ0) − (k + 1)2
)

+
h∨ − 2

8
, α ∈ ∆1/2, (6.12)

N θ
n,m(k,Λ, h) =h − 1

4(k + h∨)

((
m(k + h∨) − n

)2
+ 2(λ\|λ\ + 2ρ0)

− (k + 1)2
)

+
h∨ − 2

8
. (6.13)

λ\ in these formulas stands for

λ\ = Λ + ρ\
1/2 . (6.14)

The partition function PW (η) is defined with respect to the root system ∆W of the

Ramond sector of the vertex algebra Wk(g, x). The set of positive roots ∆+
W is a disjoint

union of

{(α,m)|α ∈ ∆0,m ∈ N}, {(α, 0)|α ∈ ∆+
0 },

{(α\,m)|α ∈ ∆1/2,m ∈ N}, {(α\, 0)|α ∈ ∆+
1/2},

{(0,m)|m ∈ N},
(6.15)

where the multiplicity of the last set is r.

6.3 General twisted sector

Let η̂ = (η, s), η ∈ h\∗, s ∈ R. The determinant dettwbη (k,Λ, h) of the Verma module with

– 22 –



J
H
E
P
1
1
(
2
0
0
6
)
0
4
5

highest weight (Λ, h) on the weight space (Λ − η, h + s) is given by

dettwbη (k,Λ, h) = (k + h∨)(r−1)
P

m,n∈N
PW (bη−(0,mn))

∏

m,n∈N

N θ
n,m(k,Λ, h)PW (bη−(0,mn))

×
∏

β∈∆+
0

m∈−εβ+Z,
m>0,n∈N

N −β
n,m (k,Λ)q(β,n)PW (bη−n(−β,m))

∏

β∈∆+
0

m∈εβ+Z,
m≥0,n∈N

N β
n,m(k,Λ)q(β,n)PW (bη−n(β,m))

×
∏

α∈∆1/2\∆+
1/2

m∈εα+1/2+Z,
m>0,n∈N

N α
n,m(k,Λ, h)q(α,n)PW (bη−n(α\,m))

∏

α∈∆+
1/2

m∈εα+1/2+Z,
m≥0,n∈N

N α
n,m(k,Λ, h)q(α,n)PW (bη−n(α\,0)),

(6.16)

where

N β
n,m(k,Λ) =(λ\ + ρ̃\|β) + m(k + h∨) − n

2 (β|β), β ∈ ∆0, (6.17)

N α
n,m(k,Λ, h) =h − 1

4(k + h∨)

((
2(λ\ + ρ̃\|α\) + 2m(k + h∨) − n(α|α)

)2

+ 2(λ\|λ\ + 2ρ̃\) −
(
k + h∨ − (ρ̃|θ)

)2

+ 2k
∑

γ∈∆+

(−1)pγ εγ(1 − εγ)
)
− hch − hne, α ∈ ∆1/2, (6.18)

N θ
n,m(k,Λ, h) =h − 1

4(k + h∨)

((
m(k + h∨) − n

)2
+ 2(λ\|λ\ + 2ρ̃\)

−
(
k + h∨ − (ρ̃|θ)

)2
+ 2k

∑

γ∈∆+

(−1)pγ εγ(1 − εγ)
)
− hch − hne. (6.19)

The twistings are assumed to be in the range 0 ≤ εα < 1 for all α ∈ ∆+, the numbers hch

and hne are given in (5.21) and (5.22) respectively, λ\ in these formulas stands for

λ\ = Λ +
1

2

∑

α∈∆1/2

(−1)pαα(εα + κα), (6.20)

where κα is defined in (5.26).

The function PW (η) is the partition function of the set of positive roots ∆+
W of the

W-algebra Wk(g, x) in the twisted sector. ∆+
W is a disjoint union of

{(α,m)|α ∈ ∆+
0 ,m ∈ εα + Z,m ≥ 0}, {(−α,m)|α ∈ ∆+

0 ,m ∈ −εα + Z,m > 0},
{(α\,m)|α ∈ ∆+

1/2,m ∈ εα + 1/2 + Z,m ≥ 0},
{(α\,m)|α ∈ ∆+\∆+

1/2,m ∈ εα + 1/2 + Z,m > 0}, {(0,m)|m ∈ N},
(6.21)

where again the multiplicity of the last set is r.

6.4 Derivation of the determinant formula

We prove here the determinant formula for minimal W-algebras, stated in sections 6.1, 6.2,

6.3. To avoid very long expressions in the derivation we will do part of the calculations for

two most important cases: the NS (untwisted) sector (5.28) and the Ramond sector (5.29).
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The determinant formula in the untwisted case was obtained in [23], we include its deriva-

tion here for completeness. The NS and Ramond sectors are special cases of the general

twisting (see section 4.2). The computations in the general twisted case (as anywhere in

this paper the case ε(h) = 0 only is discussed) are similar to the those presented in this

section.

The factors of the W-algebra W (g, x) determinant formula are generically the same

as the factors of the underlying twisted loop algebra g̃ determinant formula, the factors

just have to be reexpressed in terms of the W-algebra weights. The determinant formula

vanishes if and only if there is a singular vector in the Verma module. We recall from

section 4.4 that if there is a singular vector
∣∣ ŝ

〉
in the highest weight module Rbλ of the

affine vertex algebra Vk(g) then there is a singular vector
∣∣ s

〉
k

in the corresponding highest

weight module Qk(λ) of the vertex algebra C(g, x, k) = Vk(g) ⊗ F (Ach) ⊗ F (Ane) and it is

given by
∣∣ s

〉
k

=
∣∣ ŝ

〉
×

∣∣ 0
〉
ch

×
∣∣ 0

〉
ne

. The vector
∣∣ s

〉
k

is d0-closed and if in addition it is

not d0-exact then it is a singular vector in the W-algebra module Mk(λ) = H0(Qk(λ), d0).

We will see that generically the vector
∣∣ s

〉
k

is not d0-exact apart from a few cases listed

in the Corollary below. It also comes out that all the W-algebra singular vectors are given

by the above construction. It is proved by the standard degree counting, which shows that

there is no room for other factors in the determinant formula.

First we reexpress the factors of the affine determinant formula (3.22) in terms of the

W-algebra weights. Substituting ρ̂ = (ρ̃, h∨, 0) into (3.22) one gets the factors

ϕ α
n,m(λ, k) = (λ + ρ̃|α) + m(k + h∨) − n

2 (α|α), (6.22)

where α̂ = (α, 0,m) is a positive root of the twisted loop algebra g̃. The “twisted rho” ρ̃ is

defined in (3.16). In the NS and Ramond cases it is equal to

NS: ρ̃ = ρ = ρ0 + 1
2(h∨ − 1)θ, (6.23)

Ramond: ρ̃ = ρ0 + 1
2θ. (6.24)

In the untwisted case ρ̃ = ρ in agreement with a well known fact that the Weyl vector

of affine Lie superalgebra is equal to ρ̂ = (ρ, h∨, 0). We will show now that the Weyl

vector ρ̂ = (ρ̃, h∨, 0) of a twisted loop algebra in the Ramond sector satisfies the set of

equations (3.15), proving the conjecture of section 3.1 for the special case of Ramond

twisting. The simple roots of g̃ are

α̂s = (αs, 0, 0),

β̂s = (βs − θ, 0, 1/2),

θ̂ = (θ, 0, 0),

(6.25)

where αs and βs are simple roots of g, such that (αs|θ) = 0 and (βs|θ) = 1/2. Compute the

products of ρ̂ = (ρ̃, h∨, 0), where ρ̃ = ρ0 + 1
2θ, with our simple roots: (ρ̂|α̂s) = (ρ0|αs) =

1
2 (αs|αs) since ρ0 is the “rho” vector for the set of roots ∆+

0 ; (ρ̂|β̂s) = (ρ̃|βs) − 1 + h∨

2 =

(ρ|βs) = 1
2(βs|βs) = 1

2(β̂s|β̂s) since ρ = ρ̃ + 1
2(h∨ − 2)θ; and (ρ̂|θ̂) = 1 is trivial.

The factor ϕ α
n,m(λ, k) vanishes if and only if there is a singular vector in the g̃ module

which appears first time on the weight space λ̂ − η̂, where η̂ = (nα, 0, nm). Then (with
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exception of the cases listed in the Lemma below) there is also a singular vector in the

Wk(g, x) module with weights (Λ(λ, k), h(λ, k)) appearing first time on the weight space(
Λ − nα\, h + n

(
m + 1

2(α|θ)
))

.

Let us first discuss the case (α|θ) = 0, which happens when α ∈ ∆0 or α = 0. Then

the factor is expressed as

ϕ α
n,m(λ, k) = (λ\ + ρ̃\|α) + m(k + h∨) − n

2 (α|α), α(x) = 0. (6.26)

Substituting λ\ by a shifted Λ using (5.25) one gets exactly the factor entering to the W-

algebra determinant formula. The factor doesn’t depend on h. The corresponding singular

vector appears on the weight space (Λ − nα, h + nm).

Now we proceed to the case (α|θ) 6= 0. We would like to collect the factors which

give rise to the W-algebra module singular vectors on the weight space (Λ−nα\, h + nm).

These are two factors ϕ α
n,m− 1

2
(α|θ)

and ϕ ᾱ
n,m+ 1

2
(α|θ)

, where ᾱ is a “mirror” of the root α:

ᾱ = α\ − 1
2(α|θ)θ. (6.27)

So the following expression is the W-algebra determinant factor for the singular vectors on

the weight space (Λ − nα\, h + nm):

N α
n,m ≡ − 1

(k + h∨)(α|θ)2
ϕ α

n,m−1
2 (α|θ)

ϕ ᾱ

n,m+
1
2(α|θ)

=

=
1

(k + h∨)(α|θ)2

(
1
4(α|θ)2

(
(λ + ρ̃|θ) − k − h∨)2 −

−
(
(λ\ + ρ̃\|α\) + m(k + h∨) − n

2 (α|α)
)2

)
, α ∈ ∆>.

(6.28)

Next one has to express N α
n,m in terms of Λ and h. For that reason we rewrite (5.30)

and (5.31) as

NS: h =
1

4(k + h∨)

(
2(λ\|λ\ + 2ρ0) + ((λ|θ) − k − 1)2 − (k + 1)2

)
, (6.29)

Ramond:

h =
1

4(k + h∨)

(
2(λ\|λ\ + 2ρ0) +

(
(λ|θ) − k − h∨ + 1

)2 −

− (k + 1)2
)
− h∨ − 2

8
,

(6.30)

where in the Ramond sector formula we used the fact that sdim g1/2 = 2h∨ − 4 in the case

of minimal gradation. Note that the part including the (λ|θ) term is the same as in (6.28).

So one can rewrite the determinant factor as

NS:

N α
n,m = h − 1

4(k + h∨)

(
2(λ\|λ\ + 2ρ0) − (k + 1)2

+
4

(α|θ)2

(
(λ\ + ρ0|α\) + m(k + h∨) − n

2 (α|α)
)2

)
,

(6.31)

Ramond:

N α
n,m = h − 1

4(k + h∨)

(
2(λ\|λ\ + 2ρ0) − (k + 1)2

+
4

(α|θ)2

(
(λ\ + ρ0|α\) + m(k + h∨) − n

2 (α|α)
)2 )

+
h∨ − 2

8
,

(6.32)

– 25 –



J
H
E
P
1
1
(
2
0
0
6
)
0
4
5

where α ∈ ∆>, λ\ = Λ in the NS case and λ\ = Λ + ρ\
1/2 in the Ramond case.

Now we should check which of the singular vectors of type
∣∣ ŝ

〉
×

∣∣ 0
〉
ch
×

∣∣ 0
〉
ne

(
∣∣ ŝ

〉
is

a singular vector in the affine vertex algebra highest weight module Rbλ) are d0-exact, and

so trivial in the d0-homology.

Let
∣∣λ

〉
k

=
∣∣ λ̂

〉
×

∣∣ 0
〉
ch

×
∣∣ 0

〉
ne

be a highest weight vector in the highest weight

module Qk(λ) of the vertex algebra C(g, x, k) = Vk(g)⊗F (Ach)⊗F (Ane). Define the space

ξ as a span of vectors of the form uθ,−n1uθ,−n2 · · · uθ,−nl

∣∣λ
〉
k
, ni ∈ N.

Lemma. In the module Qk(λ) all the vectors of the form
∣∣ t̂

〉
×

∣∣ 0
〉
ch

×
∣∣ 0

〉
ne

, where∣∣ t̂
〉

is a vector in the affine vertex algebra module Rbλ, which are d0-exact or differ from

the highest weight vector
∣∣λ

〉
k

by a d0-exact vector, belong to the space ξ or to the space

uα,−1+εα ξ, where α ∈ ∆1/2, 1/2 < εα < 1 or α ∈ ∆1/2\∆−
1/2, εα = 1/2.

In the case of minimal gradation d0 has the following form:

d0 =
∑

α∈∆1/2
n∈εα+1/2+Z

(−1)pαuα,n−1/2b
α
−n +

∑

n∈Z

uθ,n−1b
θ
−n

− 1

2

∑

α∈∆+
1/2

n1∈εα+1/2+Z

n2∈−εα+1/2+Z

f θ
θ−α,α cγ,n1+n2b

θ−α
−n2

bα
−n1

+ (f |uθ)b
θ
0 +

∑

α∈∆1/2
n∈εα+1/2+Z

ψα,nbα
−n.

(6.33)

One has to analyze the action of d0 on the ghost number 1 vector cα
n

∣∣ η
〉
,

∣∣ η
〉
∈ ξ. The

action of d0 on other type ghost number 1 vectors obviously can not give a vector of the

form
∣∣ t̂

〉
×

∣∣ 0
〉
ch

×
∣∣ 0

〉
ne

. One can easily check that

d0 cθ,n

∣∣ η
〉

= (r1 uθ,n−1 + r2 δ0,n)
∣∣ η

〉
, n ∈ −N0 (6.34)

(r1 and r2 are nonzero constants), proving that any vector in ξ is in the same homology

class as zero or the highest weight vector
∣∣λ

〉
k
. In the same way

d0 cα,m

∣∣ η
〉

=
(
r3 uα,m−1/2 + r4 ψα,m + r5

∑

m1∈−εα+1/2+Z

cγ,m+m1b
θ−α
−m1

)∣∣ η
〉
,

α ∈ ∆1/2, m < 1/2, m ∈ εα + 1/2 + Z,

(6.35)

where r3, r4, r5 are nonzero constants. Now we observe that the second and the third terms

in (6.35) vanish or proportional to
∣∣ η

〉
if and only if 0 < m < 1/2 or m = 0, α ∈ ∆1/2\∆−

1/2,

and by this complete the proof of the lemma.

Corollary. The singular vectors of the form
∣∣ ŝ

〉
×

∣∣ 0
〉
ch

×
∣∣ 0

〉
ne

which do not give

rise to the singular vectors in the W-algebra highest weight module are (uθ,−1)
n
∣∣λ

〉
k

and

(uα,−1+εα)n
∣∣ λ

〉
k
, α ∈ ∆1/2\∆−

1/2, εα = 1/2, n ∈ N.

The direct analysis of the structure of the twisted loop algebra module singular vectors

shows that these are the only singular vectors which belong to the spaces ξ and uα,−1+εα ξ

discussed in the Lemma above.
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Figure 1: osp(1|2) root system.

Next we just collect all the factors eliminating those corresponding to the singular

vectors which belong to the spaces listed in the Lemma. This elimination affects the lower

bound for the running indices in the determinant formula. And at the end we get the

factors of the determinant formulas in sections 6.1, 6.2, 6.3.

The degrees of the factors should not be less than the W-algebra partitions since the

singular vector generates a maximal submodule in the W-algebra highest weight module.

So one gets that the expressions in (6.5), (6.10), (6.16) are divisors of the determinant

formulas. Now by using the usual counting arguments coming from the estimation of the

power of the determinant formula one shows that actually the powers in these expressions

are already equal to the maximal estimation and therefore there is no room for other

factors. We will not reproduce here the degree counting, since it is fully equivalent to the

one performed in [23] for the untwisted case.

7. Examples

In this section we discuss all the simple Lie superalgebras of rank up to 2 except sl(2):

sl(3), so(5), G2 , osp(1|2), sl(2|1), osp(3|2), osp(1|4), psl(2|2). The sl(2) Lie algebra is not

presented here since there is only untwisted quantum reduction on it. The osp(1|2) super-

algebra is of rank 1, all the rest in the list above are of rank 2.

In all the examples the quantum reduction corresponding to the minimal gradation

on the Lie superalgebra is discussed. The minimal gradation is generated by the sl(2)

embedding associated to the highest root θ as it is described in section 2.

The generating element x is normalized as (x|x) = 1/2 (since x ≡ θ/2 and (θ|θ) = 2).

In the case of rank 2 algebra the orthogonal to x Cartan generator is denoted by y: y ∈
h, (y|x) = (y|θ) = 0. We normalize it by (y|y) = ±1/2, where the sign should be chosen

according to the sign of the metric in the corresponding root space direction: (y|y) = −1/2

for sl(2|1), osp(3|2), psl(2|2) Lie superalgebras and (y|y) = 1/2 for the rest of the rank-2

examples.

We discuss only the case when the Cartan subalgebra is untwisted: ε(x) = ε(y) = 0.

One should note that in all the rank-2 examples there is yet another possibility: ε(y) = 1/2,

which is not studied in the current paper.

At the beginning of each example there is a figure showing the root system of the Lie

superalgebra under discussion. Even and odd roots are shown by arrows of different style.

7.1 osp(1|2)
The osp(1|2) ≈ B(0, 1) algebra is the simplest Lie superalgebra. It is of rank 1. The root

system is shown on figure 1. There is only one good gradation on it: the obvious Dynkin

gradation. The quantum reduction procedure on osp(1|2) is described in [22] and [23]: one
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Figure 2: sl(2|1) root system.

gets the famous N = 1 superconformal algebra, an extension of the Virasoro algebra by a

dimension-3/2 fermionic primary field.

The osp(1|2) algebra has two positive roots: θ and θ/2. The dual Coxeter number is

h∨ = 1
2 sdim g1/2 + 2 = 3/2. The central charge is given by (5.2):

c =
k

k + 3/2
− 6k − 5/2 . (7.1)

There are two possible twistings: ε ≡ εθ/2 = 0 leads to half-integer modes of the

dimension 3/2 operator (the NS sector); ε = 1/2 leads to integer modes (the Ramond

sector).

With a help of formula (6.3) one gets the well known [20, 17, 26] determinant formula

for the N = 1 superconformal algebra:

detη(k, h) =
∏

m,n∈N,
m−n∈2Z+2ε

νn,m(k, h)PW (η−mn
2

), (7.2)

where

νn,m(k, h) = h − 1

4(k + 3
2)

((
m(k +

3

2
) − n

2

)2 − (k + 1)2
)
− ε

8
. (7.3)

The partition function of the N = 1 superconformal algebra can be easily expressed using

the following generating function:

∞∏

l=1

1 + xl−1/2+ε

1 − xl
=

∑

n∈( 1
2
+ε)N0

PW (n)xn. (7.4)

7.2 sl(2|1)
The sl(2|1) ≈ A(1, 0) algebra is a rank-2 Lie superalgebra with 4 even and 4 odd generators.

The root system (see figure 2) consists of one pair of even roots (θ,−θ) and two pairs of odd

isotropic roots (α1,−α1;α2,−α2). The system of positive roots, for which θ is a highest

root, is ∆+ = {α1, α2, θ = α1 + α2}. The product between the simple roots is (α1|α2) = 1.

The dual Coxeter number is h∨ = 1.

There is one Dynkin gradation (it is also the minimal one), which corresponds to

f = u−θ. All other good gradations may be obtained from the Dynkin one by changing
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the element x, which generates the gradation. With respect to the minimal gradation

∆0 = ∅,∆1/2 = {α1, α2},∆−1/2 = {−α1,−α2}.
The W-algebra obtained from the minimal gradation is the N = 2 superconformal

algebra. It is generated by four fields: the Virasoro field L ∼ J{f}, two dimension-3/2

fermionic fields G+ ∼ J{−α2} and G− ∼ J{−α1}, and one dimension-1 bosonic current

J = 2J{y}, where y is defined in the beginning of section 7. One has to introduce “2” in

the definition of the U(1) current J to get it conventionally normalized: then G+ and G−

have U(1) charges +1 and −1 respectively. The explicit expressions for the fields can be

found in [22], section 7. The central charge is

c = −6k − 3. (7.5)

If ε(h) = 0 then there is a one parameter family of twistings: εα2 ≡ ε, εα1 = 1− ε. The

modes of the bosonic fields L and J are integer, n ∈ −ε+1/2+Z in G+
n and m ∈ ε+1/2+Z

in G−
m. The untwisted case ε = 0 leads to the NS sector, the case ε = 1/2 gives the Ramond

sector. Different sectors (different ε) are isomorphic to the NS sector, the isomorphism is

given by the so called U(1) flow [29].

The separation of ∆1/2 and ∆−1/2 to positive and negative parts (see section 5.2) is

made with respect to y ∈ h\: ∆+
1/2 = {α1}, ∆+

−1/2 = {−α2}, ∆−
1/2 = {α2}, ∆−

−1/2 = {−α1}.
So in the Ramond sector G+

0 annihilates the highest weight state (while G−
0 does not), since

G+ is associated to the root −α2 ∈ ∆+
−1/2. The “rho” vectors are ρ0 = 0 and ρ1/2 = −1

2α1.

Although the determinant formula for the general twisting can be obtained from the

NS sector determinant formula using the U(1) flow, we want to use our general formulae

from sections 6.2, 6.3. For the NS and Ramond sectors the determinant formula is

detbη(k, q, h) = (k + 1)
P

m,n∈N
PW (bη−(0,mn))

∏

m,n∈N

N θ
n,m(k, q, h)PW (bη−(0,mn))

×
∏

m∈ 1
2
−ε+N0

N α1
1,m(k, q, h)P

(1,m)
W (bη−(1,m))

∏

m∈ 1
2
+ε+N0

N α2
1,m(k, q, h)P

(−1,m)
W (bη−(−1,m)),

(7.6)

where

N θ
n,m(k, q, h) = h − 1

4(k + 1)

(
(m(k + 1) − n)2 − (q − ε)2 − (k + 1)2

)
− ε2

2
, (7.7)

N α1(α2)
1,m (k, q, h) = h − m

(
m(k + 1) ∓ (q − ε)

)
− ε2

2
+

k + 1

4
, (7.8)

q = 2Λ is the J0 eigenvalue, ε = 0(1/2) in the NS (Ramond) sector. This determinant

formula was obtained in [4] and in [25].

Applying the formulae in section 6.3 to the sl(2|1) Lie superalgebra one gets the deter-

minant formula of the N = 2 algebra for the case of general twisting ε. It is not surprising

that after a simplification the determinant formula becomes the same as in the case of

NS and Ramond sectors (7.6)–(7.8), the only modification is that now ε is a continuous

parameter in the range −1/2 < ε ≤ 1/2.
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Figure 3: sl(3) root system.

The partitions are expressed as coefficients of the power expansion of the following

generating functions:

∞∏

l=1

(1 + x yl−1/2−ε)(1 + x−1yl−1/2+ε)

(1 − yl)2
=

∑
PW (n1, n2)xn1yn2, (7.9)

1

1 + xj1yj2

∞∏

l=1

(1 + x yl−1/2−ε)(1 + x−1yl−1/2+ε)

(1 − yl)2
=

∑
P

(j1,j2)
W (n1, n2)xn1yn2. (7.10)

The determinant formula for the case when the orthogonal Cartan generator y ∈ h\ is

twisted (ε(y) = 1/2) is calculated using quantum reduction in [24].

7.3 sl(3)

The root system of the sl(3) ≈ A2 Lie algebra is shown on figure 3. We use the normal-

ization (α|α) = 2, the product of simple roots is (α1|α2) = −1, the dual Coxeter number

is h∨ = 3. The quantum reduction on sl(3) is very similar to the quantum reduction

on sl(2|1), the difference comes from the fact that all the roots of sl(3) are even. The

quantum reduction of the minimal gradation on sl(3) is described in [2], it leads to the

Bershadsky–Polyakov algebra. The algebra resembles the N = 2 superconformal algebra,

but the dimension-3/2 generators G+ and G− are bosonic, and their operator product

expansion contains non-linear terms of type :JJ :. The central charge of the algebra is

c =
8 k

k + 3
− 6k − 1 . (7.11)

All the discussion of the previous subsection is applicable here. There also exists a U(1)

flow. The determinant formula is

detbη(k, q, h) = (k + 3)
P

m,n∈N
PW (bη−(0,mn))

∏

m,n∈N

N θ
n,m(k, q, h)PW (bη−(0,mn))

×
∏

n∈N,

m∈
1
2−ε+N0

N α1
n,m(k, q, h)PW (bη−n(1,m))

∏

n∈N,

m∈
1
2+ε+N0

N α2
n,m(k, q, h)PW (bη−n(−1,m)),

(7.12)
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Figure 4: osp(3|2) root system.

where

N θ
n,m(k, q, h) = h − 1

4(k + 3)

(
(m(k + 3) − n)2 + 3(q + ε)2 − (k + 1)2

)
+

ε2

2
, (7.13)

N α1(α2)
n,m (k, q, h) = h − 1

4(k + 3)

((
2m(k + 3) − 2n ± 3(q + ε)

)2
+

+ 3(q + ε)2 − (k + 1)2
)

+
ε2

2
, (7.14)

q = 2√
3
Λ is the J0 eigenvalue, ε ≡ εα2 is taken in the range −1/2 < ε ≤ 1/2, in particular

ε = 0 corresponds to the NS sector, ε = 1/2 – to the Ramond sector.

The partition generating function is

∞∏

l=1

1

(1 − x yl−1/2−ε)(1 − x−1yl−1/2+ε)(1 − yl)2
=

∑
PW (n1, n2)xn1yn2. (7.15)

7.4 osp(3|2)
The osp(3|2) ≈ B(1, 1) Lie superalgebra has 6 even and 6 odd generators. The root

system is shown on figure 4. There are 2 pairs of even roots θ,−θ;α2,−α2 and 3 pairs of

odd roots α1,−α1;α3,−α3;α4,−α4. The products between simple roots are (α1|α1) = 0,

(α2|α2) = −1/2, (α1|α2) = 1/2. With respect to the minimal gradation ∆0 = {α2,−α2},
∆1/2 = {α3, α4, α1}.

The quantum hamiltonian reduction on the minimal gradation of osp(3|2) gives the

so(3) invariant superconformal algebra of [27] (and references therein). Besides the energy–

momentum field, there are three bosonic dimension-1 fields generating an affine vertex alge-

bra V−4(k+1/2)(sl(2)) and three fermionic dimension-3/2 fields in the triplet representation

of the sl(2):

J+ ∼ J{α2},

J = J{2y},

J− ∼ J{−α2},

G+ ∼ J{−α1},

G ∼ J{−α4},

G− ∼ J{−α3}.

(7.16)

The explicit reduction formulas can be found in [23], section 8.5. For operator product

expansions see [27]. The central charge of the W-algebra is

c = −6 k − 7/2. (7.17)
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The twist numbers are parameterized by one discrete parameter σ ≡ εα4 = 0 or 1/2

and one continuous parameter ε ≡ εα1 . Then εα3 = 1 − ε and εα2 = 1 − ε − σ. The NS

sector is obtained if ε = σ = 0, the Ramond sector is given by ε = σ = 1/2. There is an

isomorphism between different twisted sectors of the algebra (an analogue of the U(1) flow

in the case of N = 2 superconformal algebra):

J+
n 7→ J+

n−ε ,

J−
n 7→ J−

n+ε ,

G+
n 7→ G+

n−ε ,

G−
n 7→ G−

n+ε ,

Jn 7→ Jn + ε(2k + 1)δn,0 ,

Ln 7→ Ln − εJn − ε2(k + 1
2)δn,0 ,

Gn 7→ Gn .

(7.18)

The general twisted sector of the W-algebra with σ = 0 (σ = 1/2) is isomorphic to the

NS sector (Ramond sector). We state below only the NS and Ramond sectors determinant

formulas, the determinant formula for the general twisted sector may be obtained from the

determinant formula for the NS or Ramond sector using this isomorphism.

Inserting the quantities h∨ = 1/2, ρ0 = −1/2α2, ρ1/2 = −1/2α3 into the W-algebra

determinant formula one gets the following expression

detbη(k, q, h) = (k + 1
2 )

P
m,n∈N

PW (bη−(0,mn))
∏

m,n∈N,
m−n∈2Z+2σ

νn,m(k, h)PW (bη−(0, mn
2

))

×
∏

m∈ 1
2
−σ+N0

N α3
1,m(k, q, h)P

(1,m)
W (bη−(1,m))

∏

m∈ 1
2
+σ+N0

N α1
1,m(k, q, h)P

(−1,m)
W (bη−(−1,m))

×
∏

n∈N, m∈N0

N α2
n,m(k, q)PW (bη−n(1,m))

∏

m,n∈N

N −α2
n,m (k, q)PW (bη−n(−1,m)),

(7.19)

where

νn,m(k, q, h) = h +
k

4
+

3(1 − σ)

8
−

− 1

4(k + 1
2)

((
m(k +

1

2
) − n

2

)2 − (q +
1

2
− σ)2

)
, (7.20)

Nα1(α3)
1,m (k, q, h) = h − m2(k +

1

2
) ∓ m(q +

1

2
− σ) +

k

4
+

3(1 − σ)

8
, (7.21)

N±α2
n,m (k, q) = ∓q + 1

2 − σ

2
+ m(k +

1

2
) +

n

4
, (7.22)

where q = 2Λ is the eigenvalue of J0, and ε = σ = 0 or 1/2. The partitions are given by

∞∏

l=1

(1 + x yl−1/2−σ)(1 + x−1yl−1/2+σ)(1 + yl−1/2+σ)

(1 − yl)2(1 − xyl−1)(1 − x−1yl)
=

∑
PW (n1, n2)xn1yn2, (7.23)

1

1 + xj1yj2

∞∏

l=1

(1 + x yl−1/2−σ)(1 + x−1yl−1/2+σ)(1 + yl−1/2+σ)

(1 − yl)2(1 − xyl−1)(1 − x−1yl)
=

=
∑

P
(j1,j2)
W (n1, n2)xn1yn2. (7.24)

The determinant formula was first obtained in [27].
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Figure 5: so(5) root system.

7.5 so(5)

The root system of so(5) ≈ B2 is shown on figure 5. There are two pairs of long roots

and two pairs of short roots. The simple roots are α1 and α2 with product between them

(α1|α2) = −1. Other positive roots are α3 = α1 + α2 and θ = 2α1 + α2. With respect to

the minimal gradation associated to θ one has ∆0 = {α2,−α2},∆1/2 = {α3, α1}.
The quantum reduction corresponding to the minimal gradation on so(5) gives a W-

algebra which is generated by the Virasoro field, three bosonic dimension-1 fields forming

the sl(2) affine vertex algebra on the level k0 = k + 1/2 (Vk+1/2(sl(2))), and two bosonic

dimension–3/2 fields in the doublet representation of the sl(2):

J+ ∼ J{α2},

J = J{y},

J− ∼ J{−α2},

G+ ∼ J{−α1},

G− ∼ J{−α3}.
(7.25)

The central charge of the W-algebra is

c =
10 k

k + 3
− 6k − 1. (7.26)

The twistings are parameterized by one continuous parameter ε ≡ εα1 . Other twist

numbers are related to ε as εα3 = −ε, εα2 = −2ε. The NS sector corresponds to ε = 0, the

Ramond sector is obtained when ε = 1/2. The isomorphism connecting different sectors is

given by

J+
n 7→ J+

n−2ε ,

J−
n 7→ J−

n+2ε ,

G+
n 7→ G+

n−ε ,

G−
n 7→ G−

n+ε ,

Jn 7→ Jn − ε(k + 1
2)δn,0 ,

Ln 7→ Ln − 2εJn + ε2(k + 1
2 )δn,0 .

(7.27)

To write down the determinant formula for the W-algebra one uses h∨ = 3, ρ0 = α2/2,
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ρ\
1/2 = α\

3/2. The determinant formula for the NS and Ramond sector is

detbη(k, q, h) = (k + 3)
P

m,n∈N
PW (bη−(0,mn))

∏

m,n∈N

N θ
n,m(k, q, h)PW (bη−(0,mn))

×
∏

n∈N,

m∈
1
2+ε+N0

N α1
n,m(k, q, h)PW (bη−n(−1/2,m))

∏

n∈N,

m∈
1
2−ε+N0

N α3
n,m(k, q, h)PW (bη−n(1/2,m))

×
∏

n∈N, m∈N0

N α2
n,m(k, q)PW (bη−n(1,m))

∏

m,n∈N

N −α2
n,m (k, q)PW (bη−n(−1,m)),

(7.28)

where

N θ
n,m(k, q, h) = h − 1

4(k + 3)

((
m(k + 3) − n

)2
+

+ (2q + 1 + ε)2 − k2 − 2k − 2

)
+

ε2

2
, (7.29)

Nα1(α3)
n,m (k, q, h) = h − 1

4(k + 3)

((
∓ (2q + 1 + ε) + 2m(k + 3) − n

)2
+

+ (2q + 1 + ε)2 − k2 − 2k − 2

)
+

ε2

2
, (7.30)

N±α2
n,m (k, q) = ±(2q + 1 + ε) + m(k + 3) − n , (7.31)

here q = Λ is the J0 eigenvalue and ε = 0 or 1/2. The partition function is

∞∏

l=1

1

(1 − x1/2yl−1/2−ε)(1 − yl)2(1 − x−1/2yl−1/2+ε)

× 1

(1 − x yl−1)(1 − x−1 yl)
=

∑
PW (n1, n2)xn1yn2.

(7.32)

7.6 psl(2|2)
The root system of the psl(2|2) = sl(2|2)/CI ≈ A(1, 1) Lie superalgebra is shown on

figure 6. The metric in the α3 direction of the root space is negative. The even part of
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the algebra is just sl(2)⊕ sl(2), leading to the 2 pairs of even roots: θ,−θ;α3,−α3. There

are 8 odd roots: α1, α2, α4, α5 and their opposites, all of them are isotropic. The A(n, n)

type Lie superalgebras have an interesting feature: the number of simple roots is greater

than the rank of the algebra, in our case the number of simple roots is 3, and the rank is 2.

The roots α1 and α2 (as well as α4 and α5) coincide since the action of Cartan generators

on the corresponding root elements of the Lie superalgebra is identical, so the odd root

spaces are two-dimensional. To resolve the “degeneracy” of the odd roots one should equip

the root system with an additive “charge”: the “charge” of the even roots being zero, the

“charge” of α1 and α4 being 1 and the “charge” of α2 and α5 being −1.

The set of simple roots for which θ is a highest root is {α1, α2, α3}. The products

between simple roots are (α1|α1) = (α2|α2) = 0, (α3|α3) = −2, (α3|α1) = (α3|α2) = 1.

Other positive roots are obtained from the simple ones as α4 = α1 + α3, α5 = α2 + α3,

θ = α1 + α5 = α2 + α4.

The W-algebra obtained by the quantum reduction of the minimal gradation on

psl(2|2) is the N = 4 superconformal algebra [1]. This is a Lie algebra generated by the

Virasoro field L, three bosonic dimension-1 fields J , J+ and J−, forming an sl(2) affine ver-

tex algebra on level k0 = −k− 1, and four fermionic dimension–3/2 fields G+, G−, Ḡ+, Ḡ−

in two doublet representations of the sl(2):

J+ ∼ J{α3},

J = J{y},

J− ∼ J{−α3},

G+ ∼ J{−α1},

G− ∼ J{−α4},

Ḡ+ ∼ J{−α2},

Ḡ− ∼ J{−α5}.
(7.33)

The central charge of the algebra is

c = −6(k + 1). (7.34)

The operator product expansions of the algebra and the explicit reduction formulas can be

found in [23] (section 8.4).

The twistings are parameterized by two numbers: ε1 ≡ εα1 and ε2 ≡ εα2 . Other

twistings are expressed as εα3 = −ε1 − ε2, εα4 = −ε2, εα5 = −ε1. The NS sector is given by

ε1 = ε2 = 0, the Ramond sector corresponds to ε1 = ε2 = 1/2. There is a U(1) flow, which

relates different sectors [29], in particular NS and Ramond sectors are isomorphic.

The dual Coxeter number of psl(2|2) is h∨ = 0. In our case ∆+
0 = {α3}, ∆+

1/2 =

{α4, α5}, therefore ρ0 = α3/2 and ρ\
1/2 = −α\

4. Denoting by q = Λ the J0 eigenvalue we

write down the determinant formula of the N = 4 superconformal algebra in the case of

NS (ε = ε1 = ε2 = 0) and Ramond (ε = ε1 = ε2 = 1/2) sectors:

detbη(k, q, h) = k
P

m,n∈N
PW (bη−(0,mn))

∏

m,n∈N

N θ
n,m(k, q, h)PW (bη−(0,mn))

×
∏

m∈ 1
2
+ε+N0

N α1
1,m(k, q, h)2P

(−1/2,m)
W (bη−(−1/2,m))

∏

m∈ 1
2
−ε+N0

N α4
1,m(k, q, h)2P

(1/2,m)
W (bη−(1/2,m))

×
∏

n∈N, m∈N0

N α3
n,m(k, q)PW (bη−n(1,m))

∏

m,n∈N

N −α3
n,m (k, q)PW (bη−n(−1,m)),

(7.35)
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Figure 7: G2 root system.

where

N θ
n,m(k, q, h) = h − 1

4k

(
(km − n)2 − 4(q + 1/2 − ε)2

)
+

k + 2

4
− ε2, (7.36)

Nα1(α4)
1,m (k, q, h) = h − m

(
km ± 2(q + 1/2 − ε)

)
+

k + 2

4
− ε2, (7.37)

N±α3
n,m (k, q) = ∓2(q + 1/2 − ε) + km + n. (7.38)

The partition generating functions are
∞∏

l=1

(1 + x1/2yl−1/2−ε)2(1 + x−1/2yl−1/2+ε)2

(1 − yl)2(1 − xyl−1)(1 − x−1yl)
=

∑
PW (n1, n2)xn1yn2, (7.39)

1

1 + xj1yj2

∞∏

l=1

(1 + x1/2yl−1/2−ε)2(1 + x−1/2yl−1/2+ε)2

(1 − yl)2(1 − xyl−1)(1 − x−1yl)
=

=
∑

P
(j1,j2)
W (n1, n2)xn1yn2. (7.40)

The determinant formulae were conjectured in [18].

7.7 G2

This is a simple exceptional Lie algebra with 14 generators. The root system is shown on

figure 7. G2 is the only simple Lie algebra with a root square ratio equal to 3. There are

6 long and 6 short roots. The simple roots are α1 and α2, the products between them are

(α1|α1) = 2/3, (α2|α2) = 2, (α1|α2) = −1. Other positive roots are α3 = α2 + α1, α4 =

α2 + 2α1, α5 = α2 + 3α1, θ = 2α2 + 3α1.

The W-algebra obtained by the quantum reduction procedure from the minimal gra-

dation on G2 is generated by the Virasoro field, three dimension-1 bosonic fields forming

the sl(2) affine vertex algebra on level k0 = 3k + 5 and four bosonic dimension–3/2 fields

in the quadruplet of the sl(2):

J+ ∼ J{α1},

J = J{
√

3y},

J− ∼ J{−α1},

G++ ∼ J{−α2},

G+ ∼ J{−α3},

G− ∼ J{−α4},

G−− ∼ J{−α5}.

(7.41)
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The central charge of the algebra is

c =
14k

k + 4
− 6k . (7.42)

The twist numbers are parameterized by one discrete parameter σ, which can take

values 0 and 1/2, and one continuous parameter ε: εα1 = 2ε, εα2 = −3ε + σ, εα3 = −ε +

σ, εα4 = ε + σ, εα5 = 3ε + σ. One gets the NS sector when ε = σ = 0, the Ramond sector is

obtained when ε = 0, σ = 1/2.

The dual Coxeter number of G2 is h∨ = 4, The Weyl vectors of ∆0 = {α1,−α1} and

∆1/2 = {α2, α3, α4, α5} are ρ0 = α1/2 and ρ1/2 = (α4 + α5)/2. The determinant formula

of the minimal Wk(G2) algebra in the NS and Ramond sectors becomes

detbη(k, q, h) = (k + 4)
P

m,n∈N
PW (bη−(0,mn))

∏

m,n∈N

N θ
n,m(k, q, h)PW (bη−(0,mn))

×
∏

n∈N,

m∈
1
2 +σ+N0

N α2
n,m(k, q, h)PW (bη−n(−3/2,m))

∏

n∈N,

m∈
1
2−σ+N0

N α5
n,m(k, q, h)PW (bη−n(3/2,m))

×
∏

n∈N,

m∈
1
2 +σ+N0

N α3
n,m(k, q, h)PW (bη−n(−1/2,m))

∏

n∈N,

m∈
1
2−σ+N0

N α4
n,m(k, q, h)PW (bη−n(1/2,m))

×
∏

n∈N, m∈N0

N α1
n,m(k, q)PW (bη−n(1,m))

∏

m,n∈N

N −α1
n,m (k, q)PW (bη−n(−1,m)),

(7.43)

where

N θ
n,m(k, q, h) = h − 1

4(k + 4)

((
m(k + 4) − n

)2
+

+
4

3
(q + 2σ)(q + 2σ + 1) − (k + 1)2

)
+ σ2, (7.44)

Nα2(α5)
n,m (k, q, h) = h − 1

4(k + 4)

(
4
(
m(k + 4) − n ∓ (q + 2σ + 1/2)

)2
+

+
4

3
(q + 2σ)(q + 2σ + 1) − (k + 1)2

)
+ σ2, (7.45)

Nα3(α4)
n,m (k, q, h) = h − 1

4(k + 4)

(
4
(
m(k + 4) − 1

3
n ∓ 1

3
(q + 2σ + 1/2)

)2
+

+
4

3
(q + 2σ)(q + 2σ + 1) − (k + 1)2

)
+ σ2, (7.46)

N±α1
n,m (k, q) = ±2/3(q + 2σ + 1/2) + m(k + 4) − n/3 , (7.47)

here q =
√

3Λ is the J0 eigenvalue and σ = 0 or 1/2. The partition function is

∞∏

l=1

1

(1 − x3/2yl−1/2−σ)(1 − x1/2yl−1/2−σ)(1 − x−1/2yl−1/2+σ)(1 − x−3/2yl−1/2+σ)

× 1

(1 − x yl−1)(1 − yl)2(1 − x−1 yl)
=

∑
PW (n1, n2)xn1yn2.

(7.48)
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Figure 8: osp(1|4) root system.

7.8 osp(1|4)

The osp(1|4) ≈ B(0, 2) Lie superalgebra has 14 generators: 10 even and 4 odd. The even

subalgebra is the so(5) Lie algebra. The root system is shown on figure 8. There are 8

even roots and 4 odd roots. The metric in both directions of the root space is positive.

The simple roots are α1 and α2. The defining products are (α1|α1) = 1/2, (α2|α2) = 1 and

(α1|α2) = −1/2. Other positive roots are given by α3 = α1 +α2, α4 = 2α1 +α2, α5 = 2α1,

θ = 2α3.

The minimal W-algebra obtained from the quantum reduction of osp(1|4) is generated

along with the Virasoro field by five dimension-1 fields which form an osp(1|2) affine vertex

algebra on level k0 = k + 1 and three dimension–3/2 fields in the triplet representation of

the osp(1|2):
J+ ∼ J{α5},

j+ ∼ J{α1},

J = J{y},

j− ∼ J{−α1},

J− ∼ J{−α5},

G+ ∼ J{−α2},

G ∼ J{−α3},

G− ∼ J{−α4},

(7.49)

j+, j−, G are fermionic fields, the rest are bosonic. The central charge of the algebra is

c =
6k

k + 5/2
− 6k − 3/2. (7.50)

There is a 2 parameter family of twistings: ε ≡ εα1 is continuous parameter, σ = εα3 is

discrete, can take value 0 and 1/2. Other twistings are expressed as εα2 = σ−ε, εα4 = σ+ε,

εα5 = 2ε. The NS sector corresponds to ε = σ = 0, the Ramond sector is obtained when

ε = 0, σ = 1/2.

Inserting the values of the dual Coxeter number (h∨ = 5/2), of the Weyl vectors for

∆+
0 = {α1, α5} (ρ0 = α5/4) and for ∆+

1/2 = {α4} (ρ1/2 = α4/2) into our general minimal

W-algebra determinant formula in section 6 one gets the determinant formula for the NS
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and Ramond sectors of the minimal Wk(osp(1|4)) algebra:

detbη(k, q, h) = (k + 5
2 )

P
m,n∈N

PW (bη−(0,mn))
∏

m,n∈N,
m−n∈2Z+2σ

νn,m(k, h)PW (bη−(0, mn
2

))

×
∏

n∈N,

m∈
1
2−σ+N0

N α4
n,m(k, q, h)PW (bη−n(1/2,m))

∏

n∈N,

m∈
1
2+σ+N0

N α2
n,m(k, q, h)PW (bη−n(−1/2,m))

×
∏

n∈N, m∈N0,
m−n∈2Z+1

ν α5
n,m(k, q)PW (bη−(n

2
, mn

2
))

∏

m,n∈N,
m−n∈2Z+1

ν−α5
n,m (k, q)PW (bη−(−n

2
, mn

2
)),

(7.51)

where

νn,m(k, q, h) = h − 1

4(k + 5
2)

((
m(k +

5

2
) − n

2

)2
+

+ (2q + σ)(2q + σ + 1) − (k + 1)2
)

+
σ2

4
, (7.52)

Nα4(α2)
n,m (k, q, h) = h − 1

4(k + 5
2)

((
2m(k +

5

2
) − n ± (2q + σ +

1

2
)
)2

+

+ (2q + σ)(2q + σ + 1) − (k + 1)2
)

+
σ2

4
, (7.53)

ν±α5
n,m (k, q) = ±(2q + σ + 1/2) + m(k + 5/2) − n/2 , (7.54)

here q = Λ is the eigenvalue of J0, and σ = 0 for the NS sector and σ = 1/2 for the Ramond

sector. The partition generating function is given by

∞∏

l=1

(1 + x1/2yl−1)(1 + yl−1/2+σ)(1 + x−1/2yl)

(1 − x yl−1)(1 − x1/2yl−1/2−σ)(1 − yl)2(1 − x−1/2yl−1/2+σ)(1 − x−1yl)
=

=
∑

PW (n1, n2)xn1yn2 .

(7.55)

8. Discussion

We studied the quantum reduction of affine superalgebras in the twisted case. This is

also a subject of paper [24]. The methods and the results obtained are essentially the

same. However some details and the presentation are different. The main difference is in

the choice of the triangular decomposition of the twisted loop algebra. (Compare (3.12)

with (2.6–2.9) of [24].) Also the different normal ordered product prescriptions are used

(see appendix A). We consider only the case when the Cartan subalgebra is untwisted

(ε(h) = 0), the discussion in [24] applies to the more general twisting than one discussed

here: the case ε(h) 6= 0 for some h ∈ h is also allowed.

We would like to show that our main result, the determinant for the Ramond sector

of minimal W-algebras is the same as in [24]. Take the determinant formula of Kac and

Wakimoto in [24], Theorem 4.2. The Ramond sector corresponds to Example 4.1(b) in [24].

Using the values of sα from this Example one can evaluate the determinant factors (4.8–

4.10) of [24]. Then it is easy to see that the first type factor (α(x) = 0) coincides with our
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first type factor (6.11). The other two factors are different by an expression proportional

to

R = 4(ρ\
1/2|ρ

\
1/2 + ρ0) −

3

8
σ − 1

2
h∨(h∨ − 2), (8.1)

where σ = 1, if θ/2 ∈ ∆ and σ = 0 otherwise, ρ1/2 and ρ0 are defined in (5.32) and (5.33)

respectively. We prove here that R = 0 for any simple Lie superalgebra g. The proof

is based on the fact that the square of the Weyl vector (ρ|ρ) does not depend on the

choice of positive roots. We calculate it first for the original choice of positive roots ∆+ =

∆+
0 ∪ ∆1/2 ∪ {θ}:

(ρ|ρ) = (ρ0|ρ0) +
1

2

(
1

2
sdimg1/2 + 1

)2

. (8.2)

Now we define another set of positive roots ∆̄+ by “flipping” the roots from ∆−
1/2

to the

opposite ones: ∆̄+ = ∆+
0 ∪∆+

1/2 ∪∆+
−1/2 ∪ {θ, σ θ

2}. This set is “generated” by the element

h0 + t x, where h0 ∈ h\ is the Cartan element used to split ∆0 and ∆1/2 to positive and

negative parts (see (5.13)), and t is a sufficiently small positive number. Now the new ρ̄ is

defined with respect to ∆̄+, and its square

(ρ̄|ρ̄) = (ρ0 + 2ρ\
1/2|ρ0 + 2ρ\

1/2) +
1

2

(
−1

2
σ + 1

)2

. (8.3)

One can check that R = (ρ̄|ρ̄) − (ρ|ρ). So we proved that R = 0 and therefore the

determinant factors coincide.

The only factor which is missing in our determinant formula comparing to the formula

in [24] is ϕ0, which is present only if θ/2 ∈ ∆. This factor is a contribution of the G
{−θ/2}
0

zero mode. But since (unlike [24]) we let this operator act diagonally on the highest weight

vector (see (5.16)), we do not have this factor.

The factor multiplicities are given by partition functions defined with respect to ∆+
W

,the set of positive roots of the minimal W-algebra. The degrees are the same in the present

paper and in [24]. (Again up to a small difference in the case when there is a root θ/2:

unlike our definition (6.15), in [24] an odd root (0, 0) is included in the set of positive

W-algebra roots.)
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A. Normal ordered product conventions

In this appendix we fix the normal ordering conventions. Start from the operator product

expansion of two fields:

A(z)B(w) =
∑

l∈N(A,B)−N0

[AB](l)(w)

(z − w)l
, (A.1)

where N(A,B) ∈ Z is the order of maximal singularity in the operator product expansion

of A and B. In all the formulas in this paper the normal ordering sign : : stands for the so

called point splitting normal ordering, widely used in a physical literature. It is just the

operator product expansion with singular terms removed:

:A(z)B(w): =
∑

l∈N0

[AB](−l)(w)(z − w)l, (A.2)

and then :AB:(w) = :A(w)B(w): is just the zero order term in the operator product

expansion of fields A(z) and B(w):

:AB: = [AB](0). (A.3)

In our formalism the normal ordering is affected by local properties of the fields only (when

z is close to w). Global properties such as boundary conditions do not influence the normal

ordered product.

The normal ordered product is not associative in general, :(:AB:)C: 6= :A(:BC:):. How-

ever if the fields are free, i.e. the singular part of their mutual operator product expansions

include the identity field only (e.g. superghosts and superfermions in this paper), then the

normal ordered product is associative.

We introduce mode expansions of the fields

A(z) =
∑

n∈−∆(A)+ε(A)+Z

An z−n−∆(A),

B(w) =
∑

n∈−∆(B)+ε(B)+Z

Bn w−n−∆(B),

:AB:(w) =
∑

n∈−∆(A)−∆(B)+ε(A)+ε(B)+Z

:AB:n w−n−∆(A)−∆(B),

(A.4)

where ∆(A),∆(B),∆(:AB:) = ∆(A) + ∆(B) are conformal dimensions of correspondent

fields. The twistings ε(A), ε(B) ∈ R/Z depend on the boundary conditions. The mode

:AB:n is expressed in terms of An and Bm:

:AB:n = −
N(A,B)∑

l=1

(
ε(A)

l

)
[AB](l)n +

+
∑

m∈−∆(A)+ε(A)−N0

AmBn−m + (−1)p(A)p(B)
∑

m∈−∆(A)+1+ε(A)+N0

Bn−mAm ,

(A.5)
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ε(A) ∈ R can be any number consistent with the algebraic structure of the theory, p(A)

and p(B) are the field parities: p(A) = 0 if A is even (bosonic) and p(A) = 1 if A is odd

(fermionic). This formula is derived in appendix E of [28], it also follows from the twisted

Borcheds identity. The formula is well known in the untwisted case (ε(A) = 0), in the

twisted case there are additional terms (the first sum in (A.5)) coming from the singular

part of the operator product expansion.

We would like to stress that our definition of the normal ordered product is different

from one convenient in the mathematical literature, which uses the separation of a field to

“positive” and “negative” parts (see e.g. [19] for details):

A(z)− =
∑

n≥−∆(A)+1

An z−n−∆(A), A(z)+ =
∑

n<−∆(A)+1

An z−n−∆(A). (A.6)

Then in this formalism the normal ordered product ×
×A(z)B(w)×× is defined as

×
×A(z)B(w)×× = A(z)+B(w) + (−1)p(A)p(B)B(w)A(z)− . (A.7)

It is easy to show that in the untwisted case the two definitions coincide:

×
×A(z)B(w)×× = :A(z)B(z): (untwisted case). (A.8)

But they are in general different in the twisted case.

The advantage of the point-splitting formalism is that expressions in terms of conformal

fields (e.g. (3.5), (3.27) or (3.36)) do not change when one changes the boundary conditions.
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